Tag Archives: block bearing

China Standard Bearing Auto Bearing Wheel Hub Beraing Pillow Block Bearing Thrust Roller Bearing Self-Aligning Ball Bearing 6312 2RS Deep Groove Ball Bearing double row ball bearing

Product Description

Bearing Auto bearing Wheel hub beraing Pillow block bearing Thrust roller bearing Self-aligning ball bearing 6312 2RS Deep Groove Ball Bearing 

Bearing parameters:
 

CHROME STEEL*     Dimensions in mm unless otherwise specified
 
Bore O.D. Width Open Bearing Shielded Bearing Sealed Bearing Basic Load Ratings
      KN
HNS HNS HNS dynamic static
Reference Reference Reference C Co
20 42 12 6004 6004ZZ 6004-2RS 7.22 4.46
47 14 6204 6204ZZ 6204-2RS 12.7 6.5
52 15 6304 6304ZZ 6304-2RS 15.9 7.8
25 47 12 6005 6005ZZ 6005-2RS 10.1 5.85
52 15 6205 6205ZZ 6205-2RS 14 7.8
62 17 6305 6305ZZ 6305-2RS 22.5 11.6
80 21 6405 6405ZZ 6405-2RS 36.1 19.4
30 55 13 6006 6006ZZ 6006-2RS 10.2 6.91
62 16 6206 6206ZZ 6206-2RS 19.5 11.2
72 19 6306 6306ZZ 6306-2RS 28.1 16
90 23 6406 6406ZZ 6406-2RS 43.4 23.9
35 62 14 6007 6007ZZ 6007-2RS 16 10.3
72 17 6207 6207ZZ 6207-2RS 25.5 15.3
80 21 6307 6307ZZ 6307-2RS 33.2 19
100 25 6407 6407ZZ 6407-2RS 55 31
40 68 15 6008 6008ZZ 6008-2RS 13 11.5
80 18 6208 6208ZZ 6208-2RS 29.8 18
90 23 6308 6308ZZ 6308-2RS 39.8 23.3
110 27 6408 6408ZZ 6408-2RS 65.5 37.5
45 75 16 6009 6009ZZ 6009-2RS 21 14.9
85 19 6209 6209ZZ 6209-2RS 32.2 21
100 25 6309 6309ZZ 6309-2RS 51.1 30.5
120 29 6409 6409ZZ 6409-2RS 77.5 45.5
50 80 16 6571 6571ZZ 6571-2RS 22 16.2
90 20 6210 6210ZZ 6210-2RS 34 22.5
110 27 6310 6310ZZ 6310-2RS 59.9 36.9
130 31 6410 6410ZZ 6410-2RS 92.2 55.2
55 90 18 6011 6011ZZ 6011-2RS 30.4 22
100 21 6211 6211ZZ 6211-2RS 43.3 28.1
120 29 6311 6311ZZ 6311-2RS 71.5 44.6
140 33 6411 6411ZZ 6411-2RS 100 62.5
60 95 18 6012 6012ZZ 6012-2RS 30.7 22.7
110 22 6212 6212ZZ 6212-2RS 46.1 31.5
130 31 6312 6312ZZ 6312-2RS 79.4 50.4
150 35 6412 6412ZZ 6412-2RS 109 70
65 100 18 6013 6013ZZ 6013-2RS 32.1 24.9
120 23 6213 6213ZZ 6213-2RS 54.2 39.3
140 33 6313 6313ZZ 6313-2RS 89.5 59.7
160 37 6413 6413ZZ 6413-2RS 118 78.5
70 110 20 6014 6014ZZ 6014-2RS 38.6 30.6
125 24 6214 6214ZZ 6214-2RS 58.9 43.6
150 35 6314 6314ZZ 6314-2RS 101 66
180 42 6414 6414ZZ 6414-2RS 140 99.5
75 115 20 6015 6015ZZ 6015-2RS 31 33.1
130 25 6215 6215ZZ 6215-2RS 64.3 47.5
160 37 6315 6315ZZ 6315-2RS 111 74.2
190 45 6415 6415ZZ 6415-2RS 154 115
80 125 22 6016 6016ZZ 6016-2RS 47.5 39.8
140 26 6216 6216ZZ 6216-2RS 68.1 53.3
170 39 6316 6316ZZ 6316-2RS 120 83.9
200 48 6416 6416ZZ 6416-2RS 163 125
85 130 22 6017 6017ZZ 6017-2RS 50.8 42.8
150 28 6217 6217ZZ 6217-2RS 83.2 64
180 41 6317 6317ZZ 6317-2RS 132 96.5
210 52 6417 6417ZZ 6417-2RS 175 138
90 140 24 6018 6018ZZ 6018-2RS 58 49.8
160 30 6218 6218ZZ 6218-2RS 92.7 71.3
190 43 6318 6318ZZ 6318-2RS 145 108
225 54 6418 6418ZZ 6418-2RS 192 158
95 145 24 6019 6019ZZ 6019-2RS 57.8 50
170 32 6219 6219ZZ 6219-2RS 105 79.1
200 45 6319 6319ZZ 6319-2RS 157 122
100 150 24 6571 6571ZZ 6571-2RS 64.5 56.2
180 34 6220 6220ZZ 6220-2RS 118 88.4
215 47 6320 6320ZZ 6320-2RS 173 140
105 160 26 6571 6571ZZ 6571-2RS 71.8 63.2
190 36 6221 6221ZZ 6221-2RS 126 98.8
225 49 6321 6321ZZ 6321-2RS 173 145
110 170 28 6571 6571ZZ 6571-2RS 81.9 72.9
200 38 6222 6222ZZ 6222-2RS 136 112
240 50 6322 6322ZZ 6322-2RS 193 171
120 180 28 6571 6571ZZ 6571-2RS 88.7 79.7
215 40 6224 6224ZZ 6224-2RS 139 112
260 55 6324 6324ZZ 6324-2RS 217 196
130 200 33 6026 6026ZZ 6026-2RS 105 96.8
230 40 6226 6226ZZ 6226-2RS 148 125
280 58 6326 6326ZZ 6326-2RS 218 205
140 210 33 6571 6571ZZ 6571-2RS 116 108
250 42 6228 6228ZZ 6228-2RS 179 167
300 62 6328 6328ZZ 6328-2RS 275 272
150 225 35 6030 6030ZZ 6030-2RS 132 125
270 45 6230 6230ZZ 6230-2RS 190 183
160 240 38 6032 6032ZZ 6032-2RS 145 138
290 48 6232 6232ZZ 6232-2RS 215 218

About Deep Groove Ball Cearing

  • 6000 Series – Extra Light Ball Bearings – Ideal for limited space applications
  • 6200 Series – Light Series Ball Bearings – Balanced between space and load capacity
  • 6300 Series – Medium Series Ball Bearings – Ideal for heavier load capacity applications

Deep groove ball bearing component:

Rich bearings in stock:


Application

Package:
A. Plastic paper + kraft paper + outer carton + Nylon bag
B. Tube package + outer carton + Nylon bag
C. Single box + outer carton + pallets
D. According to your requirement

For more information, contact us directly pls.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Seals Type: Open, Z/Zz, RS/2RS
Cage: Steel
Application: Automotive
Stock: Rich
Sample: Available
Load Port: Qingdao
Samples:
US$ 0.01/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

self aligning bearing

How do innovations and advancements in self-aligning bearing technology impact their use?

Advancements and innovations in self-aligning bearing technology have a significant impact on their use in various industries. Here’s a detailed explanation:

  • Improved Performance:

Innovations in self-aligning bearing technology often result in improved performance characteristics. These advancements can include:

  • Load Capacity: New bearing designs and materials can enhance the load-carrying capacity of self-aligning bearings, allowing them to withstand higher loads or operate under more demanding conditions.
  • Speed Capability: Advancements in bearing manufacturing techniques and materials can increase the maximum rotational speed at which self-aligning bearings can operate effectively, enabling their use in high-speed applications.
  • Friction Reduction: Innovations in bearing design, lubrication, and surface treatments contribute to reducing friction and energy losses, resulting in improved efficiency and reduced operating costs.
  • Sealing and Contamination Resistance: New sealing technologies and materials can enhance the sealing performance of self-aligning bearings, providing better protection against contaminants, moisture, and harsh environmental conditions.
  • Temperature and Corrosion Resistance: Advances in bearing materials and coatings enable self-aligning bearings to withstand extreme temperatures, aggressive chemicals, and corrosive environments, expanding their range of applications.
  • Extended Service Life:

Innovations in self-aligning bearing technology often result in improved durability and longevity. These advancements can include:

  • Materials: The development of new bearing materials, such as advanced steels, ceramics, or composites, can significantly enhance the bearing’s resistance to wear, fatigue, and surface damage, leading to extended service life.
  • Lubrication: Advancements in lubrication technologies, such as the use of solid lubricants or advanced grease formulations, can provide better film formation, reduce friction, and minimize wear, thereby increasing the bearing’s operating life.
  • Surface Treatments: Innovative surface treatments, such as coatings or finishes, can improve the bearing’s resistance to corrosion, wear, and fretting, contributing to longer service intervals and reduced maintenance requirements.
  • Condition Monitoring: The integration of sensor technologies and data analytics in self-aligning bearings enables real-time monitoring of operating conditions, allowing for proactive maintenance and early detection of potential failures, thus maximizing the bearing’s service life.
  • Application Expansion:

Advancements in self-aligning bearing technology often lead to an expansion of their application range. These advancements can include:

  • New Industries: Innovations in self-aligning bearing technology can enable their use in industries or applications where they were previously not feasible. This opens up opportunities in emerging sectors, such as renewable energy, electric vehicles, robotics, or medical devices.
  • Challenging Environments: Improved performance characteristics, such as enhanced sealing, temperature resistance, or contamination resistance, allow self-aligning bearings to be deployed in challenging environments, including offshore installations, high-temperature processes, or chemically aggressive applications.
  • Specialized Applications: Advancements in self-aligning bearing technology can lead to the development of specialized bearing variants tailored for specific applications, such as high-speed machining, precision equipment, or demanding industrial automation systems.

Overall, innovations and advancements in self-aligning bearing technology bring about enhanced performance, extended service life, and expanded application possibilities. These advancements drive improvements in industrial productivity, reliability, and efficiency, making self-aligning bearings a valuable component in a wide range of industries and applications.

self aligning bearing

How do self-aligning bearings perform in applications with varying loads and misalignment challenges?

Self-aligning bearings are specifically designed to perform exceptionally well in applications with varying loads and misalignment challenges. Here’s an in-depth explanation of their performance characteristics:

  • Misalignment Compensation:

Self-aligning bearings are capable of accommodating various types of misalignment, including angular misalignment and shaft deflection. They feature a design that incorporates two rows of rolling elements, such as balls or rollers, and a spherical outer ring raceway. This design allows the bearing to self-align, adapting to misalignment caused by factors such as shaft deflection, mounting errors, thermal expansion, and vibrations. Self-aligning bearings can handle misalignment within certain limits, maintaining proper alignment between the mating components and minimizing additional stresses on the bearing.

  • Load-Carrying Capacity:

Self-aligning bearings are engineered to handle high loads, both radial and axial. They have a robust construction with larger rolling elements and increased contact area, enabling them to distribute the load more effectively. This enhanced load-carrying capacity makes self-aligning bearings suitable for applications where varying loads are encountered. Whether it’s fluctuating radial loads, axial loads, or a combination of both, self-aligning bearings can handle the dynamic forces and provide reliable performance.

  • Flexibility and Versatility:

Self-aligning bearings offer flexibility and versatility in applications with varying loads and misalignment challenges. They can operate in conditions where shafts are not perfectly aligned or where there are slight shaft movements. This flexibility allows for easier installation and alignment adjustments, reducing the time and effort required for precise positioning of the bearing. Additionally, self-aligning bearings are available in different designs and configurations, including ball bearings and roller bearings, providing options to match specific application requirements.

  • Reduced Friction and Heat Generation:

Self-aligning bearings are designed to minimize friction and heat generation during operation. The rolling elements and raceways are precisely engineered to reduce contact stresses and optimize the distribution of forces. This results in lower friction levels and reduced heat buildup, enhancing the overall efficiency and reliability of the bearing in applications where varying loads and misalignment challenges are present.

  • Extended Service Life:

Due to their ability to accommodate misalignment and handle varying loads, self-aligning bearings contribute to an extended service life of the machinery. By reducing the stresses and excessive forces on the bearing and its surrounding components, self-aligning bearings help minimize wear, prevent premature failure, and increase the overall durability of the equipment.

In summary, self-aligning bearings excel in applications with varying loads and misalignment challenges. Their ability to compensate for misalignment, handle high loads, provide flexibility in installation, and reduce friction and heat generation makes them well-suited for industries such as mining, construction, paper manufacturing, steel production, and many others where these challenges are prevalent.

self aligning bearing

How do self-aligning bearings differ from fixed or non-self-aligning bearings?

Self-aligning bearings differ from fixed or non-self-aligning bearings in several ways. Here’s a detailed explanation of the differences between these types of bearings:

  • Design and Construction:

The design and construction of self-aligning bearings are distinct from fixed or non-self-aligning bearings. Self-aligning bearings have a spherical outer ring raceway, which allows for misalignment compensation. In contrast, fixed or non-self-aligning bearings typically have a cylindrical or tapered outer ring raceway, designed for precise alignment between the shaft and the housing.

  • Misalignment Compensation:

The primary difference between self-aligning bearings and fixed or non-self-aligning bearings is their ability to compensate for misalignment. Self-aligning bearings can accommodate angular misalignment, axial misalignment, and shaft deflection, whereas fixed or non-self-aligning bearings have limited tolerance for misalignment and require precise alignment during installation.

  • Load Distribution:

Self-aligning bearings distribute the load more evenly across the rolling elements and raceways, thanks to their ability to accommodate misalignment. This helps reduce localized stresses and minimize the risk of premature failure. Fixed or non-self-aligning bearings, without the ability to compensate for misalignment, may experience uneven loading and increased stress on specific areas, leading to accelerated wear and potential failure.

  • Friction and Wear:

Due to their misalignment compensation capability, self-aligning bearings help reduce friction and wear. Misalignment in fixed or non-self-aligning bearings can cause increased friction and localized wear, leading to reduced bearing life. Self-aligning bearings distribute the load more evenly, minimizing friction and wear on the rolling elements and raceways, resulting in improved reliability and longevity.

  • Application Range:

The different design and misalignment compensation capability of self-aligning bearings make them suitable for a broader range of applications compared to fixed or non-self-aligning bearings. Self-aligning bearings are commonly used in applications where misalignment is expected, such as heavy machinery, conveyor systems, and mining equipment. Fixed or non-self-aligning bearings are typically employed in applications that require precise alignment, such as machine tools or high-precision equipment.

  • Installation and Maintenance:

Self-aligning bearings offer easier installation and maintenance compared to fixed or non-self-aligning bearings. The self-aligning capability of these bearings allows for more flexibility during the installation process, accommodating slight misalignments. In contrast, fixed or non-self-aligning bearings require careful alignment procedures to ensure proper functioning. Additionally, self-aligning bearings are often designed for easier maintenance, enabling tasks such as re-greasing or replacement without extensive disassembly.

In summary, self-aligning bearings differ from fixed or non-self-aligning bearings in their design, misalignment compensation capability, load distribution, friction and wear characteristics, application range, and ease of installation and maintenance. These differences make self-aligning bearings particularly suitable for applications where misalignment is expected or dynamic operating conditions are present.

China Standard Bearing Auto Bearing Wheel Hub Beraing Pillow Block Bearing Thrust Roller Bearing Self-Aligning Ball Bearing 6312 2RS Deep Groove Ball Bearing   double row ball bearingChina Standard Bearing Auto Bearing Wheel Hub Beraing Pillow Block Bearing Thrust Roller Bearing Self-Aligning Ball Bearing 6312 2RS Deep Groove Ball Bearing   double row ball bearing
editor by CX 2024-05-16

China supplier Ball Bearing 2310 2309 2308 2307 Self-Aligning Ball Bearing bearing block

Product Description

Product Description

Self-aligning ball bearings are double row, self-retaining units comprising solid outer rings with a concave raceway, inner rings with a cylindrical or tapered bore and ball and cage assemblies. The bearings are available in open and sealed versions.

 

Constructed with the inner ring and ball assembly contained within an outer ring which has a spherical raceway for self aligning this type of bearing is particularly suitable for applications where misalignment occurs from errors in mounting or from shaft deflection.

Dimensions(mm) Basic Load Rating(N) Weight  
Bearing Number d D B Dyn.C Stat.C0 kg
1200 10 30 9 5480 1200 0.034
1201 12 32 10 5550 1250 0.04
1202 15 35 11 7480 1750 0.049
1203 17 40 12 7900 2571 0.073
1204 20 47 14 9950 2650 0.116
1205 25 52 15 12000 3300 0.14
1206 30 62 16 15800 4700 0.22
1207 35 72 17 15800 5080 0.32
1208 40 80 18 19200 6400 0.415
1209 45 85 19 21800 7320 0.465
1210 50 90 20 22800 8080 0.531
1211 55 100 21 26800 10000 0.705
1212 60 110 22 35710 11500 0.9
1213 65 120 23 31000 12500 1.15
1214 70 125 24 34500 13500 1.24
1215 75 130 25 38800 15200 1.39
1216 80 140 26 39500 16800 1.7
1217 85 150 28 48800 20500 2.06
1218 90 160 30 56500 23200 2.59
1219 95 170 32 63500 27000 3.1
1220 100 180 34 67400 28400 3.7
1224 120 215 42 117000 51000 6.77
1300 10 35 11 7220 1620 0.058
1301 12 37 12 9420 2120 0.067
1302 15 42 13 9500 2280 0.094
1303 17 47 14 12500 3180 0.13
1304 20 52 15 12500 3380 0.165
1305 25 62 17 17800 5050 0.255
1306 30 72 19 21500 6280 0.385
1307 35 80 21 25000 7950 0.51
1308 40 90 23 29500 9500 0.715
1309 45 100 25 38000 12800 0.955
1310 50 110 27 43200 14200 1.2
1311 55 120 29 51500 18200 1.6
1312 60 130 31 57200 21200 1.95
1313 65 140 33 61800 22800 2.42
1314 70 150 35 74500 27500 3
1315 75 160 37 79000 29800 3.55
1316 80 170 39 86700 31400 4.17
1317 85 180 41 97800 37800 5
1318 90 190 43 115000 42000 5.8
1318 90 190 43 115000 42000 5.8
1319 95 200 45 132000 50800 6.7
1320 100 215 47 141000 55000 8.3
1322 110 240 50 161000 70000 12
2200 10 30 14 8000 1800 0.048
2201 12 32 14 8400 1900 0.052
2202 15 35 14 8600 2000 0.056
2203 17 40 16 10400 2500 0.087
2204 20 47 18 16400 4100 0.13
2205 25 52 18 15200 3900 0.16
2206 30 62 20 15200 4600 0.26
2207 35 72 23 21800 6650 0.405
2208 40 80 23 22500 7380 0.505
2209 45 85 23 23200 8000 0.54
2210 50 90 23 23200 8450 0.58
2211 55 100 25 26800 9950 0.8
2212 60 110 28 34000 12500 1.09
2213 65 120 31 43500 16200 1.45
2214 70 125 31 44000 17000 1.5
2215 75 130 31 44200 18000 1.6
2216 80 140 33 48800 25710 2.15
2217 85 150 36 58200 23500 2.67
2218 90 160 40 70000 28500 3.37
2220 100 180 46 97200 40500 4.94
2300 10 35 17 10000 2100 0.08
2301 12 37 17 11400 2600 0.091
2302 15 42 17 11800 2800 0.108
2303 17 47 19 14300 3500 0.168
2304 20 52 21 17800 4750 0.21
2305 25 62 24 24500 6480 0.335
2306 30 72 27 31500 8680 0.5
2307 35 80 31 39200 11000 0.675
2308 40 90 33 44800 13200 0.925
2309 45 100 36 55000 16200 1.23
2310 50 110 40 64500 19800 1.63
2311 55 120 43 75200 23500 2.09
2312 60 130 46 86800 27500 2.6
2313 65 140 48 96000 32500 3.2
2314 70 150 51 110000 37500 3.92
2315 75 160 55 122000 42800 4.78
2316 80 170 58 128000 45500 5.65

 

Features of self-aligning ball bearings:

APPLICATION

Applied in heavy loading and impact loading, such as precision instruments, low noise machine, automobile, motorcycle, metallurgy, rolling mill, mine, petroleum, paper making, cement, the sugar industry and etc. Self-Aligning Ball Bearings are used for commercial ground shafting applications.

 

Packaging & Shipping

Please contact us for more pictures of different packing.

Universal Packing

Without any logo on bearings or packing.

JDZ Packing

With our brand JDZ on bearings and packing.

Customized Packing

Depends on buyer’s requirements.

Original Brand Packing

Bearing and packing are both original. Please contact us for pictures.

 

 

QUALITY ASSURANCE

100% Quality inspection to ensure the bearings are with good quality before shipping. 

Company Profile

 

 

ZheJiang CZPT Precision Bearing Co.,Ltd. was founded by ZheJiang Defa Bearing Co.,Ltd, factory is located in ZheJiang province, China. 
We are a bearing manufacturer integrating the research, development and sales of bearings, with a floor area of 18,000 square meters and a plant area of 8,800 square meters. Equipped with modern production equipment and advanced detection instruments. 

We can provide all types bearings and OEM service according to customers’ requirements. 

Our products are widely used in the automobile, agricultural, textile production, mining, printing and packing industries, in addition to various applications at airports, in air-conditioning systems, conveying devices, ships ad so on. Our products are being exported to more than 50 countries and regions overseas including Singapore, Thailand, Iran, Turkey, Poland, Italy, England, France, Russia, Germany, the United States, Australia, Argentina, Brazil as well as other countries and regions all over the world.

We are a trusted and reliable bearing supplier, choose us to be your good partner!

 

Our Advantages:
 

1.  Professional production team with advanced production equipment and testing instruments. 
2.  Many years of export experience can provide customers with better service and problem-solving capabilities.
3.  Customers all over the world enable us to better understand the market and provide customers with suitable bearings.
4.  Sincerity, cooperation, mutual and provide good quality bearings for clients are the development idea of our company.
5.  Quick delivery, shipping goods on time. Save more time and cost for all customers. 

 

More choices

 

RFQ:

1. Q: Are you trading company or manufacturer ?
   A: We have our own factory , our type is factory + trade.

2. Q: Could you accept OEM and customize?
    A: Yes, we can customize products according to your sample or drawing.

3. Q: How long is your delivery time? 
    A: If stock, within 7 days to ship or based on your order quantity.

4. Q: Could you supply sample for free? 
    A: Yes, we can offer the sample for free,do you mind to buy a “ticket” for her?

More details, please contact with us. Thanks for your time!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Bearing Type: Self-Aligning Ball Bearing
Number of Row: Double Row
Hardness: 58-62 HRC
Chamfer: Light Chamfer or Black Chamfer
Precision Rating: P0 P6 P5 P4 P2
Bearing Cage: Nylon / Steel / Brass Cage
Samples:
US$ 1/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

self aligning bearing

How do innovations and advancements in self-aligning bearing technology impact their use?

Advancements and innovations in self-aligning bearing technology have a significant impact on their use in various industries. Here’s a detailed explanation:

  • Improved Performance:

Innovations in self-aligning bearing technology often result in improved performance characteristics. These advancements can include:

  • Load Capacity: New bearing designs and materials can enhance the load-carrying capacity of self-aligning bearings, allowing them to withstand higher loads or operate under more demanding conditions.
  • Speed Capability: Advancements in bearing manufacturing techniques and materials can increase the maximum rotational speed at which self-aligning bearings can operate effectively, enabling their use in high-speed applications.
  • Friction Reduction: Innovations in bearing design, lubrication, and surface treatments contribute to reducing friction and energy losses, resulting in improved efficiency and reduced operating costs.
  • Sealing and Contamination Resistance: New sealing technologies and materials can enhance the sealing performance of self-aligning bearings, providing better protection against contaminants, moisture, and harsh environmental conditions.
  • Temperature and Corrosion Resistance: Advances in bearing materials and coatings enable self-aligning bearings to withstand extreme temperatures, aggressive chemicals, and corrosive environments, expanding their range of applications.
  • Extended Service Life:

Innovations in self-aligning bearing technology often result in improved durability and longevity. These advancements can include:

  • Materials: The development of new bearing materials, such as advanced steels, ceramics, or composites, can significantly enhance the bearing’s resistance to wear, fatigue, and surface damage, leading to extended service life.
  • Lubrication: Advancements in lubrication technologies, such as the use of solid lubricants or advanced grease formulations, can provide better film formation, reduce friction, and minimize wear, thereby increasing the bearing’s operating life.
  • Surface Treatments: Innovative surface treatments, such as coatings or finishes, can improve the bearing’s resistance to corrosion, wear, and fretting, contributing to longer service intervals and reduced maintenance requirements.
  • Condition Monitoring: The integration of sensor technologies and data analytics in self-aligning bearings enables real-time monitoring of operating conditions, allowing for proactive maintenance and early detection of potential failures, thus maximizing the bearing’s service life.
  • Application Expansion:

Advancements in self-aligning bearing technology often lead to an expansion of their application range. These advancements can include:

  • New Industries: Innovations in self-aligning bearing technology can enable their use in industries or applications where they were previously not feasible. This opens up opportunities in emerging sectors, such as renewable energy, electric vehicles, robotics, or medical devices.
  • Challenging Environments: Improved performance characteristics, such as enhanced sealing, temperature resistance, or contamination resistance, allow self-aligning bearings to be deployed in challenging environments, including offshore installations, high-temperature processes, or chemically aggressive applications.
  • Specialized Applications: Advancements in self-aligning bearing technology can lead to the development of specialized bearing variants tailored for specific applications, such as high-speed machining, precision equipment, or demanding industrial automation systems.

Overall, innovations and advancements in self-aligning bearing technology bring about enhanced performance, extended service life, and expanded application possibilities. These advancements drive improvements in industrial productivity, reliability, and efficiency, making self-aligning bearings a valuable component in a wide range of industries and applications.

self aligning bearing

How do self-aligning bearings perform in applications with varying loads and misalignment challenges?

Self-aligning bearings are specifically designed to perform exceptionally well in applications with varying loads and misalignment challenges. Here’s an in-depth explanation of their performance characteristics:

  • Misalignment Compensation:

Self-aligning bearings are capable of accommodating various types of misalignment, including angular misalignment and shaft deflection. They feature a design that incorporates two rows of rolling elements, such as balls or rollers, and a spherical outer ring raceway. This design allows the bearing to self-align, adapting to misalignment caused by factors such as shaft deflection, mounting errors, thermal expansion, and vibrations. Self-aligning bearings can handle misalignment within certain limits, maintaining proper alignment between the mating components and minimizing additional stresses on the bearing.

  • Load-Carrying Capacity:

Self-aligning bearings are engineered to handle high loads, both radial and axial. They have a robust construction with larger rolling elements and increased contact area, enabling them to distribute the load more effectively. This enhanced load-carrying capacity makes self-aligning bearings suitable for applications where varying loads are encountered. Whether it’s fluctuating radial loads, axial loads, or a combination of both, self-aligning bearings can handle the dynamic forces and provide reliable performance.

  • Flexibility and Versatility:

Self-aligning bearings offer flexibility and versatility in applications with varying loads and misalignment challenges. They can operate in conditions where shafts are not perfectly aligned or where there are slight shaft movements. This flexibility allows for easier installation and alignment adjustments, reducing the time and effort required for precise positioning of the bearing. Additionally, self-aligning bearings are available in different designs and configurations, including ball bearings and roller bearings, providing options to match specific application requirements.

  • Reduced Friction and Heat Generation:

Self-aligning bearings are designed to minimize friction and heat generation during operation. The rolling elements and raceways are precisely engineered to reduce contact stresses and optimize the distribution of forces. This results in lower friction levels and reduced heat buildup, enhancing the overall efficiency and reliability of the bearing in applications where varying loads and misalignment challenges are present.

  • Extended Service Life:

Due to their ability to accommodate misalignment and handle varying loads, self-aligning bearings contribute to an extended service life of the machinery. By reducing the stresses and excessive forces on the bearing and its surrounding components, self-aligning bearings help minimize wear, prevent premature failure, and increase the overall durability of the equipment.

In summary, self-aligning bearings excel in applications with varying loads and misalignment challenges. Their ability to compensate for misalignment, handle high loads, provide flexibility in installation, and reduce friction and heat generation makes them well-suited for industries such as mining, construction, paper manufacturing, steel production, and many others where these challenges are prevalent.

self aligning bearing

How do self-aligning bearings compensate for misalignment in machinery?

Self-aligning bearings are designed to compensate for misalignment in machinery, allowing them to accommodate angular misalignment, axial misalignment, and shaft deflection. Here’s a detailed explanation of how self-aligning bearings achieve misalignment compensation:

  • Spherical Outer Ring Raceway:

The key feature of self-aligning bearings is their spherical outer ring raceway. This raceway is designed to have a curvature that matches the spherical shape of the rolling elements, such as balls or rollers. The spherical outer ring raceway allows the bearing to tilt or swivel in response to misalignment, enabling it to self-align with the mating components.

  • Rolling Element Design:

The rolling elements in self-aligning bearings are carefully designed to facilitate misalignment compensation. For example, spherical roller bearings have barrel-shaped rollers, while self-aligning ball bearings have two rows of balls. These rolling elements can adjust their positions within the bearing, redistributing the load and accommodating misalignment between the shaft and the housing.

  • Internal Clearance:

Self-aligning bearings often have a larger internal clearance compared to fixed or non-self-aligning bearings. This additional clearance provides space for the bearing components to move and adjust their positions during misalignment. The internal clearance allows the bearing to properly distribute the load, reduce friction, and prevent excessive stress on the rolling elements and raceways.

  • Flexible Mounting:

Self-aligning bearings offer flexibility in their mounting arrangements. They can tolerate slight misalignments during installation, which simplifies the alignment process. This flexibility is particularly beneficial in applications where thermal expansion, shaft deflection, or other dynamic factors may cause misalignment during operation.

  • Load Distribution:

When misalignment occurs, self-aligning bearings distribute the load more evenly across the rolling elements and raceways. This even load distribution helps reduce localized stresses and minimizes the risk of premature failure. By accommodating misalignment, self-aligning bearings allow for smoother operation and improved reliability in machinery.

It’s important to note that while self-aligning bearings can compensate for certain degrees of misalignment, there are limits to their misalignment capability. Excessive misalignment beyond the bearing’s specified limits can lead to increased friction, reduced bearing life, and potential damage. Therefore, it is crucial to follow the manufacturer’s guidelines and recommendations regarding misalignment limits and operating conditions to ensure optimal performance and longevity of self-aligning bearings in machinery.

China supplier Ball Bearing 2310 2309 2308 2307 Self-Aligning Ball Bearing   bearing blockChina supplier Ball Bearing 2310 2309 2308 2307 Self-Aligning Ball Bearing   bearing block
editor by CX 2024-05-15

China Custom China Factory Direct Sale Machinery Auto Part Pillow Block Tapered Roller Bearing Self-Aligning Ball Bearing manufacturer

Product Description

   

Company Profile

       MKS Hydraulics ZheJiang Co., Ltd.is a scientific and professional bearing producing enterprise, gathering R&D, producing and sales as 1  integration.mainly operating on non-standard, special andgeneral bearings.

       The company is especially focusing on the research and manufacture of general high-tech production with the 20 years R&D experience, professional R&D staff and advanced equipment, of which 8 sets are imported equipment and 40 sets are high-precision processing equipment. it has invested for building a modern workshop, including 1 Bainite heat processing workshop of world advanced level, 1 machine processing workshop, 2 moder thermostatic &no-dust roller grinders, assembly workshop, physical-chemical testing center, heating laboratory and moder-managed warehouse. Depending on the markets in China and abroad, the company puts an active attitude upon products R&D, resulting a healthy circulation of 1 development generation, 1 reserve generation, and 1 producion generation. The enterprise enlarges the R&D investment, creates own brand, and strives to increase the exporting products of high-tech & high value-added, gains the honorable sales result and grows into 1 of the largest R&D enterprise in China of non-standard bearing and special bearing.

       The advanced technology, outstanding quaity and considerable service after sales with enthusiasm make us get the rapid development in quite short time of years, and now it becomes the largest developing and producing enterprise in Asia of concrete carrier truck, speed-reducing machine,mine-digging machine, hydraulic pump spindle bearing and crecent bearing. With the continuing and wholly new developing theory of Technology is the motivation and quality is the life, We are not only pursuing the leading position in China, but also determined to march into the worldwide bearing area during it developing process, The products are mainly applied on the industries of mine, metalurgy, engineering, machineny, machine tool,electronic machine and so on, The products have gained the excllent sales resul in the markets of Europe, Southeast Asia, Middle East and so on in a dozen of countries and areas.

Company Environment

Company Advantages

Packaging & Shipping

FAQ

1. how can we guarantee quality?
Always final Inspection before shipment;

2.what can you buy from us?
Auto Bearing,Bearing Housing,Taper Roller Bearing,Casting,Hydraulic pump,Hydraulic parts,excavator parts and so on.

Ceep groove ball bearing/Self aligning ball bearing/Cylindrical roller bearing/Spherical roller bearing/ Angular contact ball bearing/Tapered roller bearing/ Thrust ball bearing/Thrust cylindrical roller bearing/Needle roller bearing

3. why should you buy from us not from other suppliers?
One stop bearing and mechanical customized parts,
Designed bearing,
Small quantity order available 
Factory price offer
OEM ODM bearing service

4.What is the transportation?
lf small quantity,we suggest to send by express,such as DHL,UPS,TNT FEDEX flarge amount,by air or sea shipping.

5.Can we design packaging?
Except regular packing,and we can make customer’s own packing.

6.What’s your payment method?
We can accept LC, T/T, D/P, PayPal, Western Union, Small-amount payment, MoneyGram etc.

7.Can the company provide free samples?
We can provide samples for free. You only need to provide shipping.

8.Is the company a production factory or a trading company?
MKS company is a manufacturing enterprise focusing on bearings ,hydraulic pumps and hydraulic parts , produce and sales.

If you have any questions,Please contact us,We must be reply quickly.

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Raceway Super Finishing: Yes
Bearing Grade: P3
Service: OEM / ODM Customized Logo
Shipment: by Sea, by Air, by Express
Quality: Good /High Quality
Features: High Precision, High Speed, Long Life
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

self aligning bearing

What is the role of cage design and materials in self-aligning bearing performance and durability?

The cage design and materials used in self-aligning bearings play a crucial role in determining their performance and durability. Here’s a detailed explanation:

  • Guiding and Retaining Rolling Elements:

The primary function of the cage in a self-aligning bearing is to guide and retain the rolling elements, such as balls or rollers, in their proper positions. The cage prevents the rolling elements from contacting and rubbing against each other, ensuring smooth and controlled movement within the bearing. By providing precise spacing and alignment, the cage maintains the integrity of the bearing assembly and optimizes load distribution. It also minimizes the risk of damage or premature wear caused by improper positioning or collision of the rolling elements.

  • Reducing Friction and Heat Generation:

The cage design and materials can significantly impact the friction and heat generation within the self-aligning bearing. An efficient cage design ensures proper lubrication distribution by allowing the lubricant to reach all the critical contact points between the rolling elements and raceways. This reduces friction and minimizes the associated heat generation, leading to improved overall bearing efficiency and reduced energy losses. Additionally, the choice of materials for the cage should consider factors such as low friction coefficients and good thermal conductivity to further optimize performance.

  • Maintaining Alignment and Stability:

Self-aligning bearings are designed to accommodate misalignment between the shaft and the housing. The cage plays a vital role in maintaining the alignment and stability of the rolling elements, ensuring that they stay properly seated and aligned during operation. A well-designed cage provides sufficient space and support for the rolling elements to adjust and align themselves, even under dynamic conditions or when subjected to external forces. This enables the self-aligning bearing to continue operating smoothly and efficiently, minimizing the risk of excessive stress, wear, or premature failure.

  • Enhancing Durability and Service Life:

The cage design and materials significantly impact the durability and service life of self-aligning bearings. A robust and durable cage is essential for withstanding the loads, impact forces, and vibrations that can occur during operation. The cage should be resistant to wear, fatigue, and corrosion to ensure long-term performance and reliability. By selecting appropriate cage materials, such as high-strength steels, thermoplastics, or engineered polymers, manufacturers can enhance the durability and service life of self-aligning bearings in various operating conditions.

  • Reducing Weight and Inertia:

The cage design and materials also influence the weight and inertia of the self-aligning bearing. Lighter cage materials, such as certain polymers or composite materials, can help reduce the overall weight of the bearing assembly. This has several benefits, including lower energy consumption, reduced centrifugal forces, and improved dynamic performance. By minimizing the weight and inertia of the cage, self-aligning bearings can operate at higher speeds, exhibit improved response times, and potentially achieve higher levels of performance and efficiency.

Overall, the cage design and materials used in self-aligning bearings are critical factors in determining their performance, durability, and overall efficiency. A well-designed cage facilitates proper guidance and retention of the rolling elements, reduces friction and heat generation, maintains alignment and stability, enhances durability and service life, and contributes to overall weight optimization. By considering the specific application requirements and selecting the appropriate cage design and materials, engineers can optimize the performance and durability of self-aligning bearings in a wide range of industrial applications.

self aligning bearing

What is the impact of proper lubrication and maintenance on the performance and lifespan of self-aligning bearings?

Proper lubrication and maintenance have a significant impact on the performance and lifespan of self-aligning bearings. Here’s a detailed explanation of their importance:

  • Lubrication:

Proper lubrication is crucial for self-aligning bearings as it provides a protective film between the rolling elements and raceways, reducing friction and wear. Here are the key impacts of proper lubrication:

  • Reduced Friction and Wear: Adequate lubrication helps minimize friction and wear between the rolling elements and raceways. This reduces heat generation, prevents excessive wear, and extends the bearing’s lifespan.
  • Optimized Load Distribution: Proper lubrication ensures that the load is distributed evenly across the bearing components. This helps prevent localized stresses and improves the overall load-carrying capacity of the bearing.
  • Corrosion and Contamination Protection: Lubrication forms a protective barrier that helps prevent corrosion and protects the bearing against contaminants such as dust, dirt, and moisture. This enhances the bearing’s resistance to damage and maintains its performance in challenging environments.
  • Noise and Vibration Reduction: Properly lubricated bearings exhibit reduced noise and vibration levels, contributing to smoother and quieter operation of the machinery.
  • Maintenance:

Regular maintenance practices are essential for ensuring the optimal performance and lifespan of self-aligning bearings. Here are the key impacts of proper maintenance:

  • Early Detection of Issues: Regular inspections and maintenance activities enable the early detection of potential problems such as misalignment, excessive wear, or lubrication issues. Timely identification of these issues allows for proactive measures to be taken, preventing further damage and minimizing downtime.
  • Preservation of Alignment: Proper maintenance helps ensure the correct alignment of the bearing with its mating components. This is particularly important for self-aligning bearings, as misalignment beyond their specified limits can lead to decreased performance and premature failure.
  • Lubrication Monitoring: Maintenance involves monitoring the lubrication condition, including oil or grease quality, contamination levels, and replenishment requirements. Regular lubrication checks and replenishment help maintain the optimal lubricating film and extend the bearing’s service life.
  • Cleaning and Debris Removal: Maintenance activities include cleaning the bearing and its surrounding areas, removing accumulated debris, and ensuring proper sealing. This helps prevent contamination and ensures the smooth operation of the bearing.
  • Replacement of Worn Components: Through maintenance, worn or damaged components can be identified and replaced, preventing further damage and maintaining the bearing’s performance. This can include replacing seals, cages, or damaged rolling elements.

Proper lubrication and maintenance practices are essential for maximizing the performance and lifespan of self-aligning bearings. They help reduce friction, prevent excessive wear, protect against corrosion and contaminants, preserve alignment, and enable early detection of potential issues. Adhering to manufacturer recommendations and industry best practices for lubrication and maintenance ensures the reliable and efficient operation of machinery and extends the service life of self-aligning bearings.

self aligning bearing

Can you describe the load-carrying capacity and load ratings of self-aligning bearings?

Self-aligning bearings are designed to carry both radial and axial loads, and their load-carrying capacity is an essential consideration for their proper selection and application. Here’s a detailed description of the load-carrying capacity and load ratings of self-aligning bearings:

  • Radial Load Capacity:

The radial load capacity of a self-aligning bearing refers to its ability to carry loads that act perpendicular to the axis of rotation. It is influenced by factors such as bearing geometry, material properties, and internal design. Self-aligning bearings, particularly spherical roller bearings, are known for their high radial load-carrying capacity. This is due to their construction that includes multiple rows of robust rolling elements and optimized raceway profiles. The larger contact area between the rolling elements and raceways allows for efficient load distribution, enabling the bearing to handle substantial radial loads.

  • Axial Load Capacity:

The axial load capacity of a self-aligning bearing refers to its ability to carry loads that act parallel to the axis of rotation. The axial load-carrying capacity depends on the bearing type and design, as well as the arrangement of rolling elements. Self-aligning thrust roller bearings, for example, are specifically designed to handle significant axial loads. They utilize cylindrical or tapered rolling elements arranged in a specific orientation to withstand axial forces. Self-aligning ball bearings can also carry moderate axial loads in addition to their primary radial load-carrying capacity.

  • Dynamic Load Rating:

The dynamic load rating of a self-aligning bearing is a standardized value that indicates the maximum load that the bearing can sustain for a specified number of rotations or operating hours without experiencing premature fatigue failure. It is expressed in terms of the calculated dynamic equivalent radial or axial load, which takes into account the actual load distribution within the bearing. The dynamic load rating is typically provided by the manufacturer and allows engineers to compare and select bearings based on their expected performance under dynamic operating conditions.

  • Static Load Rating:

The static load rating of a self-aligning bearing represents the maximum load that the bearing can sustain without permanent deformation or excessive stress when the bearing is stationary or subjected to very slow rotations. It is typically higher than the dynamic load rating. The static load rating is an important consideration for applications where the bearing may be subjected to prolonged static or slow-speed conditions, such as in machinery that operates with intermittent or intermittent rotational motion.

It is important to note that the load-carrying capacity and load ratings provided by manufacturers are based on standardized testing methods and assumptions about operating conditions. Actual load capacity can be influenced by factors such as temperature, lubrication, misalignment, and operating speed. Therefore, it is crucial to consider the specific application requirements and consult the manufacturer’s technical data and guidelines when selecting a self-aligning bearing to ensure its suitability and optimal performance.

China Custom China Factory Direct Sale Machinery Auto Part Pillow Block Tapered Roller Bearing Self-Aligning Ball Bearing   manufacturerChina Custom China Factory Direct Sale Machinery Auto Part Pillow Block Tapered Roller Bearing Self-Aligning Ball Bearing   manufacturer
editor by CX 2024-05-15

China OEM High Speed Excavator Double Row Steel Self-Aligning Ball Rolling Bearings bearing block

Product Description

High Speed Excavator Double Row Steel Self-aligning Ball Rolling Bearings 

Product Description

Self Aligning Ball Bearings

Self aligning ball bearings have 2 rows of balls, a common sphered raceway in the outer ring and 2 deep uninterrupted raceway grooves in the inner ring. Self aligning ball bearings are insensitive to angular misalignment of the shaft relative to the housing, which can be caused, for example, by shaft deflection or housing deformations. Self aligning ball bearings are suitable for applications where the shaft relative to the housing bore is prone to angular misalignments. Under normal loads, depending on the dimensional series, the maximum permissible angular misalignment is approximately 2° to 4°. These bearings are available in open and sealed versions and inner rings with a cylindrical or tapered bore.

Product Parameters

Bearing NO. Principal dimensions Speed ratings(r/min) Basic load ratings
d D B / C / T Grease Oil (kN) (kN)
Dynamic Static
2208 40 80 23 7500 9000 22.5 7.38
2208K 40 80 23 7500 9000 22.5 7.38
2209 45 85 23 7100 8500 23.2 8
2209K 45 85 23 7100 8500 23.2 8
2210 50 90 23 6300 8000 23.2 8.45
2210K 50 90 23 6300 8000 23.2 8.45
2211 55 100 25 6000 7100 26.8 9.95
2211K 55 100 25 6000 7100 26.8 9.95
2212 60 110 28 5300 6300 34 12.5
2212K 60 110 28 5300 6300 34 12.5
2213 65 120 31 4800 6000 43.5 16.2
2213K 65 120 31 4800 6000 43.5 16.2
2214 70 125 31 4500 5600 44 17
2214K 70 125 31 4500 5600 44 17
2215 75 130 31 4300 5300 44.2 18
2215K 75 130 31 4300 5300 44.2 18
2304 20 52 21 11000 14000 17.8 4.75
2304K 20 52 21 11000 14000 17.8 4.75
2305 25 62 24 9500 12000 24.5 6.48
2305K 25 62 24 9500 12000 24.5 6.48
2306 30 72 27 8000 10000 31.5 8.68
2306K 30 72 27 8000 10000 31.5 8.68
2307 35 80 31 7100 9000 39.2 11
2307K 35 80 31 7100 9000 39.2 11
2308 40 90 33 6300 8000 44.8 13.2
2308K 40 90 33 6300 8000 44.8 13.2
2309 45 100 36 5600 7100 55 16.2
2309K 45 100 36 5600 7100 55 16.2
2310 50 110 40 5000 6300 64.5 19.8
2310K 50 110 40 5000 6300 64.5 19.8

Detailed Photos

Company Profile

HangZhou HONGSHI MACHINERY AND ELECTRICAL EQUIPMENT CO.,LTD. (formerly HangZhou Hengmai Bearing Co., Ltd.) was established in 2007, and HMMH is our own brand.
HMMH mainly produces spherical roller bearings, pillow block ball bearing, deep groove ball bearings and cylindrical roller bearings. Spherical roller bearing products range from 20mm to 1M, with the main production of crusher bearings 22300 series. Low noise deep groove ball bearings, product accuracy can reach ZV2, ZV3, ZV4, mainly produces motor bearings 6200, 6300 series. pillow block ball bearing, mainly producing UCP, UCF, UCFL, UCFC, UCT series, the products are mainly used in agricultural machine and peeling machine. We also use the bainite quenching process to ensure the hardness of the bearing, using good testing equipment, such as roundness meter, profiler, roughness meter, universal measuring instrument, spectrometer, metallographic microscope to control each detail quality monitoring.

To ensure product quality, we have established a strict quality control system and an experienced team of engineers and after-sales service. From forgings to final products  we have a strict quality control system.

Your needs are our production motivation, and your satisfaction is our goal. We are willing to serve our customers with the goal of “Quality First, Service First, Credit First”.

FAQ

1.A:How can I do customized design?
   Q:We are request for the drawing with the measurement, material and other speicifcation as details as you can, and for the customized products, our MOQ is 10 pcs per design

2.Q: How can I get a sample?
   A: If you only need 1or 2 samples for small size inner weight below 2kgs, we can supply free samples and we have stocks, you can just pay the shipping cost .if you need several design samples, then you should paid the cost with shipping.

3.Q: What package do you usually use?
   A: Usually we use single box or tape. Also according to customer’s special requirement.

4.Q:How long do you need for production? Or what’s your production lead time?
   A:Usually could be sent our in 2-3 days if in stock for samples. Customized item usually need 14-30 days to produce.

5.Q:How long will you guarantee your quality?
   A:We supply test report and quality control photos from materials to finished goods during production.
 
6.Q:How to do after sale service?
   A:Good after-sale service is our promise. Before placing orders, our professional engineer will discuss all technical data and your bearing usage condition and CZPT you what kind of steel materials to fit your products and usage life possible.

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Self-Aligning Roller Bearing
Quality: High Quality
Rolling Body: Roller Bearings
Contact Angle: Normal
Material: Bearing Steel
Spherical: Aligning Bearings
Customization:
Available

|

Customized Request

self aligning bearing

How do innovations and advancements in self-aligning bearing technology impact their use?

Advancements and innovations in self-aligning bearing technology have a significant impact on their use in various industries. Here’s a detailed explanation:

  • Improved Performance:

Innovations in self-aligning bearing technology often result in improved performance characteristics. These advancements can include:

  • Load Capacity: New bearing designs and materials can enhance the load-carrying capacity of self-aligning bearings, allowing them to withstand higher loads or operate under more demanding conditions.
  • Speed Capability: Advancements in bearing manufacturing techniques and materials can increase the maximum rotational speed at which self-aligning bearings can operate effectively, enabling their use in high-speed applications.
  • Friction Reduction: Innovations in bearing design, lubrication, and surface treatments contribute to reducing friction and energy losses, resulting in improved efficiency and reduced operating costs.
  • Sealing and Contamination Resistance: New sealing technologies and materials can enhance the sealing performance of self-aligning bearings, providing better protection against contaminants, moisture, and harsh environmental conditions.
  • Temperature and Corrosion Resistance: Advances in bearing materials and coatings enable self-aligning bearings to withstand extreme temperatures, aggressive chemicals, and corrosive environments, expanding their range of applications.
  • Extended Service Life:

Innovations in self-aligning bearing technology often result in improved durability and longevity. These advancements can include:

  • Materials: The development of new bearing materials, such as advanced steels, ceramics, or composites, can significantly enhance the bearing’s resistance to wear, fatigue, and surface damage, leading to extended service life.
  • Lubrication: Advancements in lubrication technologies, such as the use of solid lubricants or advanced grease formulations, can provide better film formation, reduce friction, and minimize wear, thereby increasing the bearing’s operating life.
  • Surface Treatments: Innovative surface treatments, such as coatings or finishes, can improve the bearing’s resistance to corrosion, wear, and fretting, contributing to longer service intervals and reduced maintenance requirements.
  • Condition Monitoring: The integration of sensor technologies and data analytics in self-aligning bearings enables real-time monitoring of operating conditions, allowing for proactive maintenance and early detection of potential failures, thus maximizing the bearing’s service life.
  • Application Expansion:

Advancements in self-aligning bearing technology often lead to an expansion of their application range. These advancements can include:

  • New Industries: Innovations in self-aligning bearing technology can enable their use in industries or applications where they were previously not feasible. This opens up opportunities in emerging sectors, such as renewable energy, electric vehicles, robotics, or medical devices.
  • Challenging Environments: Improved performance characteristics, such as enhanced sealing, temperature resistance, or contamination resistance, allow self-aligning bearings to be deployed in challenging environments, including offshore installations, high-temperature processes, or chemically aggressive applications.
  • Specialized Applications: Advancements in self-aligning bearing technology can lead to the development of specialized bearing variants tailored for specific applications, such as high-speed machining, precision equipment, or demanding industrial automation systems.

Overall, innovations and advancements in self-aligning bearing technology bring about enhanced performance, extended service life, and expanded application possibilities. These advancements drive improvements in industrial productivity, reliability, and efficiency, making self-aligning bearings a valuable component in a wide range of industries and applications.

self aligning bearing

Are there specific industries or applications where self-aligning bearings are frequently used?

Self-aligning bearings find widespread use in various industries and applications where misalignment compensation, high load-carrying capacity, and reliability are crucial. Here’s a detailed description of some specific industries and applications where self-aligning bearings are frequently employed:

  • Heavy Machinery and Equipment:

Self-aligning bearings are extensively used in heavy machinery and equipment, such as mining equipment, construction machinery, and material handling systems. These applications often involve high loads, dynamic forces, and operating conditions that can lead to misalignment. Self-aligning bearings help accommodate misalignment caused by factors like vibration, thermal expansion, and shaft deflection, ensuring smooth operation and prolonged service life of the machinery.

  • Paper and Pulp Industry:

In the paper and pulp industry, self-aligning bearings are commonly employed in critical equipment like paper machines, pulp digesters, and drying cylinders. These applications involve high-speed rotating components and heavy loads. Self-aligning bearings can handle misalignment caused by temperature variations, mechanical stresses, and process fluctuations, maintaining the reliability and productivity of the machinery in this demanding industry.

  • Steel and Metal Processing:

Self-aligning bearings are vital in steel and metal processing applications, including rolling mills, continuous casting machines, and metal shredders. These applications involve extreme loads, high temperatures, and harsh operating conditions. Self-aligning bearings help compensate for misalignment caused by thermal expansion, deflection, and heavy loads, ensuring the durability and performance of the equipment in this industry.

  • Conveyor Systems:

Conveyor systems in industries such as mining, manufacturing, and logistics often rely on self-aligning bearings. These bearings accommodate misalignment caused by belt tension, shaft deflection, and uneven loading. Self-aligning bearings help ensure smooth and reliable operation of the conveyor systems, minimizing downtime and optimizing productivity.

  • Printing and Packaging:

In printing and packaging applications, self-aligning bearings are commonly used in printing presses, packaging machines, and label applicators. These applications involve high-speed rotations, varying loads, and precise alignment requirements. Self-aligning bearings help compensate for misalignment caused by machine vibrations and thermal effects, ensuring accurate and efficient operation of the printing and packaging equipment.

  • Automotive Industry:

The automotive industry extensively utilizes self-aligning bearings in various components and systems, including wheel hubs, transmission systems, and suspension systems. These applications encounter dynamic forces, varying loads, and misalignment due to road conditions and vehicle movements. Self-aligning bearings help absorb misalignment and maintain proper alignment between components, contributing to the safety, performance, and longevity of automotive vehicles.

These are just a few examples of industries and applications where self-aligning bearings are frequently used. Other sectors, such as agriculture, energy, marine, and aerospace, also rely on self-aligning bearings to ensure reliable and efficient operation of their equipment and machinery.

self aligning bearing

How do self-aligning bearings differ from fixed or non-self-aligning bearings?

Self-aligning bearings differ from fixed or non-self-aligning bearings in several ways. Here’s a detailed explanation of the differences between these types of bearings:

  • Design and Construction:

The design and construction of self-aligning bearings are distinct from fixed or non-self-aligning bearings. Self-aligning bearings have a spherical outer ring raceway, which allows for misalignment compensation. In contrast, fixed or non-self-aligning bearings typically have a cylindrical or tapered outer ring raceway, designed for precise alignment between the shaft and the housing.

  • Misalignment Compensation:

The primary difference between self-aligning bearings and fixed or non-self-aligning bearings is their ability to compensate for misalignment. Self-aligning bearings can accommodate angular misalignment, axial misalignment, and shaft deflection, whereas fixed or non-self-aligning bearings have limited tolerance for misalignment and require precise alignment during installation.

  • Load Distribution:

Self-aligning bearings distribute the load more evenly across the rolling elements and raceways, thanks to their ability to accommodate misalignment. This helps reduce localized stresses and minimize the risk of premature failure. Fixed or non-self-aligning bearings, without the ability to compensate for misalignment, may experience uneven loading and increased stress on specific areas, leading to accelerated wear and potential failure.

  • Friction and Wear:

Due to their misalignment compensation capability, self-aligning bearings help reduce friction and wear. Misalignment in fixed or non-self-aligning bearings can cause increased friction and localized wear, leading to reduced bearing life. Self-aligning bearings distribute the load more evenly, minimizing friction and wear on the rolling elements and raceways, resulting in improved reliability and longevity.

  • Application Range:

The different design and misalignment compensation capability of self-aligning bearings make them suitable for a broader range of applications compared to fixed or non-self-aligning bearings. Self-aligning bearings are commonly used in applications where misalignment is expected, such as heavy machinery, conveyor systems, and mining equipment. Fixed or non-self-aligning bearings are typically employed in applications that require precise alignment, such as machine tools or high-precision equipment.

  • Installation and Maintenance:

Self-aligning bearings offer easier installation and maintenance compared to fixed or non-self-aligning bearings. The self-aligning capability of these bearings allows for more flexibility during the installation process, accommodating slight misalignments. In contrast, fixed or non-self-aligning bearings require careful alignment procedures to ensure proper functioning. Additionally, self-aligning bearings are often designed for easier maintenance, enabling tasks such as re-greasing or replacement without extensive disassembly.

In summary, self-aligning bearings differ from fixed or non-self-aligning bearings in their design, misalignment compensation capability, load distribution, friction and wear characteristics, application range, and ease of installation and maintenance. These differences make self-aligning bearings particularly suitable for applications where misalignment is expected or dynamic operating conditions are present.

China OEM High Speed Excavator Double Row Steel Self-Aligning Ball Rolling Bearings   bearing blockChina OEM High Speed Excavator Double Row Steel Self-Aligning Ball Rolling Bearings   bearing block
editor by CX 2024-05-14

China high quality Self-Aligning High Performance Imported CZPT UC319 UC320 UC322 Pillow Block Bearings bearing distributors

Product Description

Product Name

UC319 UC320 UC322

 

Product category

Pillow block bearing 

 

Product material

GCR15 bearing steel 

 

Product advantage

High speed low noise stable operation of  High temperature resistance

 

Application program

Converying equipment,agricultural machinery

 

Customer order protection

Warranty for 1 year

 

Minimum order quantity

1 piece

 

PRODUCTS AND WEIGHT LIST OF FKD PILLOW BLOCK      
ITEM KGS ITEM KGS ITEM KGS ITEM KGS ITEM KGS ITEM KGS ITEM KGS
UC201 0.2 UCP201 0.61 UCF201 0.59 UCFL201 0.44 UCT201 0.75 UCFC201 0.71 UCPA201 0.56
UC201-8 0.19 UCP201-8 0.6 UCF201-8 0.58 UCFL201-8 0.43 UCT201-8 0.74 UCFC201-8 0.7 UCPA201-8 0.55
UC202 0.18 UCP202 0.59 UCF202 0.57 UCFL202 0.42 UCT202 0.73 UCFC202 0.69 UCPA202 0.54
UC202-10 0.18 UCP202-10 0.59 UCF202-10 0.57 UCFL202-10 0.42 UCT202-10 0.73 UCFC202-10 0.69 UCPA202-10 0.54
UC203 0.17 UCP203 0.58 UCF203 0.56 UCFL203 0.41 UCT203 0.72 UCFC203 0.68 UCPA203 0.53
UC204 0.15 UCP204 0.61 UCF204 0.54 UCFL204 0.39 UCT204 0.7 UCFC204 0.66 UCPA204 0.51
UC204-12 0.16 UCP204-12 0.62 UCF204-12 0.55 UCFL204-12 0.4 UCT204-12 0.71 UCFC204-12 0.67 UCPA204-12 0.52
UC205 0.19 UCP205 0.69 UCF205 0.66 UCFL205 0.57 UCT205 0.73 UCFC205 0.92 UCPA205 0.68
UC205-14 0.22 UCP205-14 0.72 UCF205-14 0.69 UCFL205-14 0.6 UCT205-14 0.76 UCFC205-14 0.95 UCPA205-14 0.71
UC205-15 0.2 UCP205-15 0.7 UCF205-15 0.67 UCFL205-15 0.58 UCT205-15 0.74 UCFC205-15 0.93 UCPA205-15 0.69
UC205-16 0.19 UCP205-16 0.69 UCF205-16 0.66 UCFL205-16 0.57 UCT205-16 0.73 UCFC205-16 0.92 UCPA205-16 0.68
UC206 0.3 UCP206 1.13 UCF206 0.93 UCFL206 0.76 UCT206 1.17 UCFC206 1.21 UCPA206 0.99
UC206-18 0.32 UCP206-18 1.15 UCF206-18 0.95 UCFL206-18 0.78 UCT206-18 1.19 UCFC206-18 1.23 UCPA206-18 1.01
UC206-19 0.3 UCP206-19 1.13 UCF206-19 0.93 UCFL206-19 0.76 UCT206-19 1.17 UCFC206-19 1.21 UCPA206-19 0.99
UC206-20 0.28 UCP206-20 1.11 UCF206-20 0.91 UCFL206-20 0.74 UCT206-20 1.15 UCFC206-20 1.19 UCPA206-20 0.97
UC207 0.45 UCP207 1.34 UCF207 1.2 UCFL207 1.05 UCT207 1.45 UCFC207 1.5 UCPA207 1.42
UC207-20 0.5 UCP207-20 1.39 UCF207-20 1.25 UCFL207-20 1.1 UCT207-20 1.5 UCFC207-20 1.55 UCPA207-20 1.47
UC207-21 0.48 UCP207-21 1.37 UCF207-21 1.23 UCFL207-21 1.08 UCT207-21 1.48 UCFC207-21 1.53 UCPA207-21 1.45
UC207-22 0.45 UCP207-22 1.34 UCF207-22 1.2 UCFL207-22 1.05 UCT207-22 1.45 UCFC207-22 1.5 UCPA207-22 1.42
UC207-23 0.43 UCP207-23 1.32 UCF207-23 1.18 UCFL207-23 1.03 UCT207-23 1.43 UCFC207-23 1.48 UCPA207-23 1.4
UC208 0.59 UCP208 1.8 UCF208 1.57 UCFL208 1.34 UCT208 2.11 UCFC208 1.87 UCPA208 1.64
UC208-24 0.64 UCP208-24 1.85 UCF208-24 1.62 UCFL208-24 1.39 UCT208-24 2.16 UCFC208-24 1.92 UCPA208-24 1.69
UC209 0.65 UCP209 1.84 UCF209 1.76 UCFL209 1.7 UCT209 2.18 UCFC209 2.34 UCPA209 1.8
UC209-26 0.74 UCP209-26 1.93 UCF209-26 1.85 UCFL209-26 1.79 UCT209-26 2.27 UCFC209-26 2.43 UCPA209-26 1.89
UC209-27 0.71 UCP209-27 1.9 UCF209-27 1.82 UCFL209-27 1.76 UCT209-27 2.24 UCFC209-27 2.4 UCPA209-27 1.86
UC209-28 0.68 UCP209-28 1.87 UCF209-28 1.79 UCFL209-28 1.73 UCT209-28 2.21 UCFC209-28 2.37 UCPA209-28 1.83
UC210 0.74 UCP210 2.49 UCF210 2.05 UCFL210 1.92 UCT210 2.35 UCFC210 2.72 UCPA210 2.23
                           
ITEM KGS ITEM KGS ITEM KGS ITEM KGS ITEM KGS ITEM KGS ITEM KGS
UC210-30 0.85 UCP210-30 2.6 UCF210-30 2.16 UCFL210-30 2.03 UCT210-30 2.46 UCFC210-30 2.83 UCPA210-30 2.34
UC210-31 0.76 UCP210-31 2.51 UCF210-31 2.07 UCFL210-31 1.94 UCT210-31 2.37 UCFC210-31 2.74 UCPA210-31 2.25
UC210-32 0.71 UCP210-32 2.46 UCF210-32 2.02 UCFL210-32 1.89 UCT210-32 2.32 UCFC210-32 2.69 UCPA210-32 2.2
UC211 0.96 UCP211 2.91 UCF211 2.96 UCFL211 2.73 UCT211 3.56 UCFC211 3.66 UCPA211 2.79
UC211-32 1.1 UCP211-32 3.05 UCF211-32 3.1 UCFL211-32 2.87 UCT211-32 3.7 UCFC211-32 3.8 UCPA211-32 2.93
UC211-34 1.01 UCP211-34 2.96 UCF211-34 3.01 UCFL211-34 2.78 UCT211-34 3.61 UCFC211-34 3.71 UCPA211-34 2.84
UC211-35 0.93 UCP211-35 2.88 UCF211-35 2.93 UCFL211-35 2.7 UCT211-35 3.53 UCFC211-35 3.63 UCPA211-35 2.76
UC212 1.38 UCP212 3.98 UCF212 3.54 UCFL212 3.56 UCT212 4.23 UCFC212 4.58 UCPA212 3.66
UC212-36 1.51 UCP212-36 4.11 UCF212-36 3.67 UCFL212-36 3.69 UCT212-36 4.36 UCFC212-36 4.71 UCPA212-36 3.79
UC212-38 1.37 UCP212-38 3.97 UCF212-38 3.53 UCFL212-38 3.55 UCT212-38 4.22 UCFC212-38 4.57 UCPA212-38 3.65
UC212-39 1.27 UCP212-39 3.87 UCF212-39 3.43 UCFL212-39 3.45 UCT212-39 4.12 UCFC212-39 4.47 UCPA212-39 3.55
UC213 1.67 UCP213 5.17 UCF213 4.92 UCFL213 4.37 UCT213 6.04 UCFC213 5.07    
UC213-40 1.75 UCP213-40 5.25 UCF213-40 5 UCFL213-40 4.45 UCT213-40 6.12 UCFC213-40 5.15    
UC214 1.95 UCP214 5.57 UCF214 5.09 UCFL214 4.95 UCT214 6.35 UCFC214 6.15    
UC214-44 1.95 UCP214-44 5.57 UCF214-44 5.09 UCFL214-44 4.95 UCT214-44 6.35 UCFC214-44 6.15    
UC215 2.14 UCP215 6.14 UCF215 5.79 UCFL215 5.18 UCT215 6.6 UCFC215 6.79    
UC215-47 2.17 UCP215-47 6.17 UCF215-47 5.82 UCFL215-47 5.21 UCT215-47 6.63 UCFC215-47 6.82    
UC215-48 2.06 UCP215-48 6.06 UCF215-48 5.71 UCFL215-48 5.1 UCT215-48 6.52 UCFC215-48 6.71    
UC216 2.61 UCP216 7.11 UCF216 6.91 UCFL216 6.36 UCT216 7.24 UCFC216 8.01    
UC217 3.38 UCP217 9.18 UCF217 8.63 UCFL217 7.68 UCT217 10.33 UCFC217 9.18    
UC218 4 UCP218 10.63 UCF218 9.5 UCFL218 9.54 UCT218 11.8 UCFC218 11.3    
UC218-56 4.1 UCP218-56 10.73 UCF218-56 9.6 UCFL218-56 9.64 UCT218-56 11.9 UCFC218-56 11.4    
    UCP220 14.5 UCF220 13                
                           
ITEM KGS ITEM KGS ITEM KGS ITEM KGS ITEM KGS ITEM KGS ITEM KGS
UC305 0.34 UCP305 1.28 SA201 0.13 SB201 0.1 UK205 0.16 NA204 0.2 UKP205 0.66
UC306 0.52 UCP306 1.72 SA202 0.12 SB202 0.09 UK206 0.25 NA205 0.25 UKP206 1.08
UC307 0.68 UCP307 2.33 SA203 0.1 SB203 0.08 UK207 0.36 NA206 0.38 UKP207 1.25
UC308 0.95 UCP308 3.01 SA204 0.16 SB204 0.12 UK208 0.44 NA207 0.54 UKP208 1.65
UC309 1.22 UCP309 3.77 SA205 0.19 SB205 0.16 UK209 0.51 NA208 0.73 UKP209 1.7
UC310 1.57 UCP310 5.47 SA206 0.3 SB206 0.25 UK210 0.56 NA209 0.79 UKP210 2.31
UC311 1.98 UCP311 6.83 SA207 0.45 SB207 0.36 UK211 0.74 NA210 0.95 UKP211 2.69
UC312 2.45 UCP312 8.15 SA208 0.6 SB208 0.45 UK212 1     UKP212 3.6
UC313 3.14 UCP313 9.41 SA209 0.64 SB209 0.56 UK213 1.27     UKP213 4.77
UC314 3.62 UCP314 11.08 SA210 0.71 SB210 0.62 UK215 1.52     UKP215 5.52
UC315 4.5 UCP315 13.8         UK216 1.84     UKP216 6.34
UC316 5.2 UCP316 16.2         UK217 2.34     UKP217 8.14
UC317 6.63             UK218 2.85     UKP218 9.48
UC318 7.33                        
UC319 8.37                        
UC320 10.32                        
   
   
   

Product Description

FAQ

 

1. Where is our factory? We are based in ZheJiang , China, We are an integrated enterprise of industry and trade start from 2008,sell to Domestic Market(40.00%),South America(10.00%),Eastern Europe(10.00%),North America(5.00%),Southeast Asia (5.00%), Africa(5.00%),Mid East(5.00%),Eastern Asia(5.00%) Central America(5.00%),Northern Europe(5.00%),South, Asia(5.00%). Our brand is DMC.

2. How can we guarantee quality?
Before we mass-produce the goods. Provide the customer with a free sample list, sample confirmation is satisfied with the
customer, we according to the requirements of the customer mass production if the bearing goods received by the customer are not
satisfied, the product can be returned and replaced within a month.
3.What do you get from us?
We can provide all kinds of bearings OEM&ODM customiz
-ed service.
You will get an excellent supplier and excellent bearing price. We will help you revitalize your career and try our best to let
customers earn more money.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Unseparated
Feature: Vacuum, Magnetically, Low Temperature, Corrosion Resistant, High Temperature, High Speed
Samples:
US$ 17.91/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

self aligning bearing

Are there specific considerations for choosing self-aligning bearings in applications with challenging operating conditions or varying misalignment requirements?

Yes, there are specific considerations to take into account when choosing self-aligning bearings for applications with challenging operating conditions or varying misalignment requirements. Here’s a detailed explanation:

  • Operating Conditions:

When selecting self-aligning bearings for challenging operating conditions, it’s important to consider factors such as temperature, speed, load, and environmental conditions. High temperatures, extreme speeds, heavy loads, and harsh environments can all impact the performance and durability of the bearing. In such cases, it may be necessary to choose self-aligning bearings with special heat-resistant materials, high-speed capabilities, increased load-carrying capacity, or enhanced corrosion resistance. Additionally, proper lubrication selection and maintenance practices become crucial to ensure optimal performance and longevity of the bearings.

  • Misalignment Requirements:

Self-aligning bearings are specifically designed to accommodate misalignment between the shaft and the housing. However, different applications may have varying misalignment requirements. It’s important to consider the magnitude and type of misalignment that the bearing will experience. Some self-aligning bearings can accommodate larger misalignments, while others are designed for smaller or specific types of misalignments, such as angular or parallel misalignment. Understanding the misalignment characteristics of the application is essential to select the appropriate self-aligning bearings that can effectively handle the expected misalignment conditions.

  • Load Capacity and Dynamic Performance:

In applications with challenging operating conditions, it’s crucial to assess the load capacity and dynamic performance requirements of the self-aligning bearings. Heavy loads, shock loads, or vibrations can significantly affect the bearing’s performance and service life. It’s important to choose self-aligning bearings with adequate load-carrying capacity, high shock resistance, and robust construction to withstand the demanding conditions. Additionally, the dynamic performance of the bearing, including factors such as rotational speed, acceleration, and deceleration, should be carefully evaluated to ensure that the selected bearings can meet the application’s performance requirements.

  • Sealing and Contamination Prevention:

In challenging operating conditions, effective sealing and contamination prevention become crucial for self-aligning bearings. Dust, dirt, moisture, and other contaminants can significantly impact the bearing’s performance and service life. It’s important to select self-aligning bearings with appropriate sealing solutions, such as contact seals, non-contact seals, or hybrid seals, depending on the specific application requirements. These seals help prevent the ingress of contaminants and maintain the integrity of the bearing’s internal components, ensuring reliable operation even in harsh environments.

  • Lubrication and Maintenance:

Lubrication and maintenance practices are critical considerations for self-aligning bearings in challenging operating conditions. Proper lubrication selection, including the choice of lubricant type, viscosity, and replenishment frequency, is essential to ensure optimal bearing performance and minimize the risk of premature wear or failure. Additionally, adhering to appropriate maintenance practices, such as regular inspections, re-lubrication, and monitoring of operating conditions, can help identify any potential issues early on and prevent costly downtime or unexpected failures.

By considering these specific factors and requirements, engineers can choose the most suitable self-aligning bearings for applications with challenging operating conditions or varying misalignment requirements. Taking into account the unique demands of the application ensures optimal performance, durability, and reliability of the self-aligning bearings in even the most demanding environments.

self aligning bearing

Can you explain the installation and alignment considerations for self-aligning bearings?

Proper installation and alignment are crucial for the optimal performance and longevity of self-aligning bearings. Here’s a detailed explanation of the installation and alignment considerations:

  • Pre-Installation Preparation:

Prior to the installation of self-aligning bearings, it is essential to ensure a clean and suitable working environment. Here are some key considerations:

  • Cleanliness: The work area should be clean and free from dust, dirt, and contaminants to prevent the ingress of foreign particles during the installation process.
  • Tools and Equipment: Prepare the necessary tools and equipment required for the installation, including suitable lifting devices, torque wrenches, and lubrication apparatus.
  • Inspection: Thoroughly inspect the bearing and its components for any signs of damage or defects. Replace any worn or damaged parts before proceeding with the installation.
  • Lubrication: Apply the recommended lubricant to the bearing and ensure that it is properly distributed before installation. Lubrication helps reduce friction, prevent excessive wear, and facilitate smooth operation.
  • Mounting Considerations:

When mounting self-aligning bearings, it is important to follow certain guidelines to ensure proper fit and alignment:

  • Shaft and Housing Tolerances: Check the shaft and housing tolerances to ensure they comply with the specifications provided by the bearing manufacturer. Proper tolerances help achieve the correct fit and prevent excessive clearance or interference.
  • Shaft and Housing Preparation: Clean the shaft and housing surfaces and remove any burrs or rough edges that could interfere with the bearing’s seating. Ensure that the shaft and housing are machined to the recommended tolerances and finishes.
  • Mounting Method: There are various methods for mounting self-aligning bearings, including press fitting, thermal expansion, and hydraulic mounting. Follow the manufacturer’s instructions and recommended mounting method to ensure a secure and accurate fit.
  • Sealing: If the self-aligning bearing has integral seals or shields, ensure that they are correctly positioned and aligned during installation. Proper sealing helps protect the bearing against contaminants and extends its service life.
  • Tightening: When tightening the bearing onto the shaft or in the housing, use the recommended torque values provided by the manufacturer. Over-tightening can lead to excessive preload or damage, while under-tightening can result in insufficient seating and compromised performance.
  • Alignment Considerations:

Proper alignment is crucial for self-aligning bearings to function optimally. Here are some alignment considerations:

  • Angular Misalignment: Self-aligning bearings can accommodate angular misalignment to a certain degree. However, it is important to keep the misalignment within the manufacturer’s specified limits to prevent excessive stress and premature wear.
  • Shaft Deflection: Consider the potential shaft deflection that may occur during operation and ensure that the self-aligning bearing can handle the expected deflection without exceeding its capacity. This may involve selecting a bearing with appropriate load-carrying capacity and considering additional support or stabilization measures.
  • Alignment Verification: After installation, verify the alignment of the self-aligning bearing by measuring the axial and radial runout using appropriate alignment tools. Adjust the positioning if necessary to achieve the desired alignment within the specified tolerances.

By following these installation and alignment considerations, you can ensure the proper fit, alignment, and performance of self-aligning bearings. Adhering to the manufacturer’s guidelines and best practices helps maximize the lifespan and reliability of the bearings in various applications.

self aligning bearing

How do self-aligning bearings differ from fixed or non-self-aligning bearings?

Self-aligning bearings differ from fixed or non-self-aligning bearings in several ways. Here’s a detailed explanation of the differences between these types of bearings:

  • Design and Construction:

The design and construction of self-aligning bearings are distinct from fixed or non-self-aligning bearings. Self-aligning bearings have a spherical outer ring raceway, which allows for misalignment compensation. In contrast, fixed or non-self-aligning bearings typically have a cylindrical or tapered outer ring raceway, designed for precise alignment between the shaft and the housing.

  • Misalignment Compensation:

The primary difference between self-aligning bearings and fixed or non-self-aligning bearings is their ability to compensate for misalignment. Self-aligning bearings can accommodate angular misalignment, axial misalignment, and shaft deflection, whereas fixed or non-self-aligning bearings have limited tolerance for misalignment and require precise alignment during installation.

  • Load Distribution:

Self-aligning bearings distribute the load more evenly across the rolling elements and raceways, thanks to their ability to accommodate misalignment. This helps reduce localized stresses and minimize the risk of premature failure. Fixed or non-self-aligning bearings, without the ability to compensate for misalignment, may experience uneven loading and increased stress on specific areas, leading to accelerated wear and potential failure.

  • Friction and Wear:

Due to their misalignment compensation capability, self-aligning bearings help reduce friction and wear. Misalignment in fixed or non-self-aligning bearings can cause increased friction and localized wear, leading to reduced bearing life. Self-aligning bearings distribute the load more evenly, minimizing friction and wear on the rolling elements and raceways, resulting in improved reliability and longevity.

  • Application Range:

The different design and misalignment compensation capability of self-aligning bearings make them suitable for a broader range of applications compared to fixed or non-self-aligning bearings. Self-aligning bearings are commonly used in applications where misalignment is expected, such as heavy machinery, conveyor systems, and mining equipment. Fixed or non-self-aligning bearings are typically employed in applications that require precise alignment, such as machine tools or high-precision equipment.

  • Installation and Maintenance:

Self-aligning bearings offer easier installation and maintenance compared to fixed or non-self-aligning bearings. The self-aligning capability of these bearings allows for more flexibility during the installation process, accommodating slight misalignments. In contrast, fixed or non-self-aligning bearings require careful alignment procedures to ensure proper functioning. Additionally, self-aligning bearings are often designed for easier maintenance, enabling tasks such as re-greasing or replacement without extensive disassembly.

In summary, self-aligning bearings differ from fixed or non-self-aligning bearings in their design, misalignment compensation capability, load distribution, friction and wear characteristics, application range, and ease of installation and maintenance. These differences make self-aligning bearings particularly suitable for applications where misalignment is expected or dynamic operating conditions are present.

China high quality Self-Aligning High Performance Imported CZPT UC319 UC320 UC322 Pillow Block Bearings   bearing distributorsChina high quality Self-Aligning High Performance Imported CZPT UC319 UC320 UC322 Pillow Block Bearings   bearing distributors
editor by CX 2024-05-13

China Best Sales Manufacturer Supply Large Stock Chrome Steel Insert Bearing with Housing UCP204 UCT210 Ucpa208 Ucha212 Self Aligning Bearing Pillow Block Bearing drive shaft bearing

Product Description

 Pillow Block Bearing Insert Bearing Heavy Duty Type a Ball Insert Bearing Housing Unit Smn Series Ball Bearing SMN100K SMN101K SMN102K SMN103K SMN104K SMN105K  

Product Description

 

Pillow blocks can refer to a variety of bearing styles such as single row ball bearings, double row ball bearings, spherical roller bearings, taper roller bearings, etc. A unit is typically a reference for a 1-piece housing as opposed to a split housing. For simplicity, this article will focus on single row ball bearing units.

 

“A basic pillow block bearing unit is typically an insert bearing which is based on a sealed deep groove ball bearing and a 1 piece housing.” Joshua Goldman, Applications Engineer for USA says. These units consist of:

 

*an insert bearing which is based on a sealed single row deep groove ball bearing in the 62 series with a spherical (convex) outside diameter surface and an extended inner ring:

*a one-piece housing made of several different material options which include but are not limited to cast iron, cast stainless steel, and composite. The housing has a correspondingly sphered but concave bore.

GE Series Radial Spherical Plain Bearing
 

Product name

Pillow Block Bearing P205 P206 P207 P208 P209 P211 P212

Structure

Pillow Block Bearing

Size

 

Applicable Industries

Hotels, Garment Shops, Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Farms, Restaurant, Home Use, Retail, Food Shop, Printing Shops, Construction works , Energy & Mining, Food & Beverage Shops, Advertising Company

Precision Rating

P0 P6 P5 P4 P2

Seals Type

ZZ 2RS OPEN

Number of Row

Single Row

Place of Origin

cn

Detailed Photos

Our Advantages

Application of Bearing

Pillow Block Bearings Widely used in various industries, our bearings meet the requirements of your project!

 

Strict Testing Produre

 

Company Profile

 

 

Packaging & Shipping

 

FAQ

Q: Are you trading company or manufacturer ?

 A: We are factory.We have our own brand:HQA .If you interested in our product,I can take you to visit our factory.

 Q: How long is your delivery time?
 A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is  according to quantity.

Q: Where is your factory located? How can I visit there?
 A: Our factory is located in ZheJiang Province,You can take the high-speed rail or plane to visit.

Q: Do you provide samples ? it is free charge?
 A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q:The MOQ is how much?
 A: About ordinary standard type of bearing ,We have rich inventory,not have MOQ,if your need a 
     product is Non-standard size,need customize,we will according the product size to determine the MOQ.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Aligning: Non-Aligning Bearing
Separated: Separated
Feature: Low Temperature, Corrosion Resistant, High Temperature, Low Viberation
Rows Number: Single
Raceway: Spherical Raceway
Material: Bearing Steel
Samples:
US$ 0.01/Set
1 Set(Min.Order)

|
Request Sample

self aligning bearing

Can you provide guidance on the selection and sizing of self-aligning bearings for specific applications?

Yes, here’s a detailed explanation on the selection and sizing of self-aligning bearings for specific applications:

  • Understand the Application Requirements:

The first step in selecting and sizing self-aligning bearings is to thoroughly understand the requirements of the application. Consider factors such as:

  • Load: Determine the magnitude and direction of the load the bearing will be subjected to, including static, dynamic, and shock loads.
  • Speed: Identify the rotational speed or frequency of operation to ensure the selected bearing can handle the required speed without compromising performance.
  • Environment: Consider the operating environment, including temperature range, presence of contaminants, moisture, or corrosive substances, and any other specific environmental factors that may affect the bearing’s performance.
  • Mounting and Space Constraints: Evaluate the available space for bearing installation and any specific mounting requirements or constraints within the application.
  • Service Life and Maintenance: Determine the desired service life and maintenance intervals to select a bearing that can meet these requirements.
  • Consult Bearing Manufacturer’s Catalogs and Technical Resources:

Once the application requirements are understood, consult the catalogs and technical resources provided by self-aligning bearing manufacturers. These resources contain valuable information such as bearing types, sizes, load ratings, and operating characteristics.

Identify the specific self-aligning bearing series or types that are suitable for the application based on the load capacity, speed capability, and other performance factors.

  • Consider Bearing Materials and Lubrication:

Pay attention to the bearing materials and lubrication requirements. Different bearing materials, such as steel, ceramic, or polymers, offer varying levels of performance in terms of load capacity, temperature resistance, and corrosion resistance.

Choose the appropriate bearing material that aligns with the application’s requirements. Additionally, consider the lubrication method and type of lubricant recommended for optimal bearing performance and longevity.

  • Factor in Safety and Reliability:

Ensure that the selected self-aligning bearing has an appropriate safety margin to handle the expected loads and operating conditions. It is advisable to consult with bearing experts or utilize engineering calculations to verify the bearing’s suitability and reliability.

  • Consider Application-Specific Features:

Depending on the application, there may be specific features or options to consider. For example, applications with high contamination levels may require sealed or shielded bearings to prevent debris ingress, while applications with high-speed requirements may benefit from bearings with optimized internal designs or cage materials.

  • Review Manufacturer Recommendations:

Finally, review the manufacturer’s recommendations for the selected self-aligning bearing in terms of installation guidelines, maintenance procedures, and any specific considerations for the application.

By following these guidelines and consulting with bearing manufacturers or experts when needed, you can make an informed selection and sizing of self-aligning bearings that meet the specific requirements of your application, ensuring reliable performance and longevity.

self aligning bearing

How do self-aligning bearings perform in applications with varying loads and misalignment challenges?

Self-aligning bearings are specifically designed to perform exceptionally well in applications with varying loads and misalignment challenges. Here’s an in-depth explanation of their performance characteristics:

  • Misalignment Compensation:

Self-aligning bearings are capable of accommodating various types of misalignment, including angular misalignment and shaft deflection. They feature a design that incorporates two rows of rolling elements, such as balls or rollers, and a spherical outer ring raceway. This design allows the bearing to self-align, adapting to misalignment caused by factors such as shaft deflection, mounting errors, thermal expansion, and vibrations. Self-aligning bearings can handle misalignment within certain limits, maintaining proper alignment between the mating components and minimizing additional stresses on the bearing.

  • Load-Carrying Capacity:

Self-aligning bearings are engineered to handle high loads, both radial and axial. They have a robust construction with larger rolling elements and increased contact area, enabling them to distribute the load more effectively. This enhanced load-carrying capacity makes self-aligning bearings suitable for applications where varying loads are encountered. Whether it’s fluctuating radial loads, axial loads, or a combination of both, self-aligning bearings can handle the dynamic forces and provide reliable performance.

  • Flexibility and Versatility:

Self-aligning bearings offer flexibility and versatility in applications with varying loads and misalignment challenges. They can operate in conditions where shafts are not perfectly aligned or where there are slight shaft movements. This flexibility allows for easier installation and alignment adjustments, reducing the time and effort required for precise positioning of the bearing. Additionally, self-aligning bearings are available in different designs and configurations, including ball bearings and roller bearings, providing options to match specific application requirements.

  • Reduced Friction and Heat Generation:

Self-aligning bearings are designed to minimize friction and heat generation during operation. The rolling elements and raceways are precisely engineered to reduce contact stresses and optimize the distribution of forces. This results in lower friction levels and reduced heat buildup, enhancing the overall efficiency and reliability of the bearing in applications where varying loads and misalignment challenges are present.

  • Extended Service Life:

Due to their ability to accommodate misalignment and handle varying loads, self-aligning bearings contribute to an extended service life of the machinery. By reducing the stresses and excessive forces on the bearing and its surrounding components, self-aligning bearings help minimize wear, prevent premature failure, and increase the overall durability of the equipment.

In summary, self-aligning bearings excel in applications with varying loads and misalignment challenges. Their ability to compensate for misalignment, handle high loads, provide flexibility in installation, and reduce friction and heat generation makes them well-suited for industries such as mining, construction, paper manufacturing, steel production, and many others where these challenges are prevalent.

self aligning bearing

Can you describe the load-carrying capacity and load ratings of self-aligning bearings?

Self-aligning bearings are designed to carry both radial and axial loads, and their load-carrying capacity is an essential consideration for their proper selection and application. Here’s a detailed description of the load-carrying capacity and load ratings of self-aligning bearings:

  • Radial Load Capacity:

The radial load capacity of a self-aligning bearing refers to its ability to carry loads that act perpendicular to the axis of rotation. It is influenced by factors such as bearing geometry, material properties, and internal design. Self-aligning bearings, particularly spherical roller bearings, are known for their high radial load-carrying capacity. This is due to their construction that includes multiple rows of robust rolling elements and optimized raceway profiles. The larger contact area between the rolling elements and raceways allows for efficient load distribution, enabling the bearing to handle substantial radial loads.

  • Axial Load Capacity:

The axial load capacity of a self-aligning bearing refers to its ability to carry loads that act parallel to the axis of rotation. The axial load-carrying capacity depends on the bearing type and design, as well as the arrangement of rolling elements. Self-aligning thrust roller bearings, for example, are specifically designed to handle significant axial loads. They utilize cylindrical or tapered rolling elements arranged in a specific orientation to withstand axial forces. Self-aligning ball bearings can also carry moderate axial loads in addition to their primary radial load-carrying capacity.

  • Dynamic Load Rating:

The dynamic load rating of a self-aligning bearing is a standardized value that indicates the maximum load that the bearing can sustain for a specified number of rotations or operating hours without experiencing premature fatigue failure. It is expressed in terms of the calculated dynamic equivalent radial or axial load, which takes into account the actual load distribution within the bearing. The dynamic load rating is typically provided by the manufacturer and allows engineers to compare and select bearings based on their expected performance under dynamic operating conditions.

  • Static Load Rating:

The static load rating of a self-aligning bearing represents the maximum load that the bearing can sustain without permanent deformation or excessive stress when the bearing is stationary or subjected to very slow rotations. It is typically higher than the dynamic load rating. The static load rating is an important consideration for applications where the bearing may be subjected to prolonged static or slow-speed conditions, such as in machinery that operates with intermittent or intermittent rotational motion.

It is important to note that the load-carrying capacity and load ratings provided by manufacturers are based on standardized testing methods and assumptions about operating conditions. Actual load capacity can be influenced by factors such as temperature, lubrication, misalignment, and operating speed. Therefore, it is crucial to consider the specific application requirements and consult the manufacturer’s technical data and guidelines when selecting a self-aligning bearing to ensure its suitability and optimal performance.

China Best Sales Manufacturer Supply Large Stock Chrome Steel Insert Bearing with Housing UCP204 UCT210 Ucpa208 Ucha212 Self Aligning Bearing Pillow Block Bearing   drive shaft bearingChina Best Sales Manufacturer Supply Large Stock Chrome Steel Insert Bearing with Housing UCP204 UCT210 Ucpa208 Ucha212 Self Aligning Bearing Pillow Block Bearing   drive shaft bearing
editor by CX 2024-04-17

China Professional Manufacturer Wholesale Self-Aligning Ball Bearing 1322K H322 100X240X50mm Good Reputation bearing block

Product Description

 

Product Description

 

Product Parameters

 

 Self aligning ball bearings mainly bear radial loads and can also withstand small axial loads. The axial displacement of the
shaft (shell) is limited within the clearance limit, with automatic centering performance, allowing normal operation under
conditions of relatively small internal and external inclination. It is suitable for components where the support seat hole cannot
strictly guarantee coaxiality. Self aligning ball bearings are suitable for bearing heavy and impact loads, precision instruments,
low noise motors, automobiles, motorcycles, metallurgy, rolling mills, mines, petroleum, papermaking, cement, sugar squeezing
and other industries, as well as general machinery.

Type

BALL

Structure

Self-Aligning

Applicable Industries

Food Shop, Energy & Mining, Food & Beverage Shops, Advertising Company

Precision Rating

P0 P6 P5 P4 P2

Seals Type

OPEN OR SEAL

Number of Row

Double row

Product name

Self-aligning Roller Bearing

Our business:Produce and customize various bearing brands. (Packaging and logo can be customized. All copyright belongs to the customer. We promise not to disclose any information.)

Self-aligning ball bearings 1200series 1226
1300series
2200series
2300series

Company Profile

 

Our Factory

FAQ

 

Q1: Are you trading company or manufacturer ? A: We are factory.

Q2: Do you provide samples ? is it free or extra ? A: Yes, we could offer the sample for free charge but do not pay the cost of freight.
Q3 What about lead time? A: It is according to quantity.Generally, it is 5-10 days if the goods are in stock,it is 15-30 days if the goods are not in stock.
Q4: What is your terms of payment ? A: Payment=1000USD, 30% T/T in advance ,balance before shippment.
Q5What about the warranty? A: Depending on customer needs, usually 12 months.
Q6 What’s the MOQ? A: The MOQ depends on the size of the product,and usually1 piece..

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Self-Aligning Ball Bearing
Material: Bearing Steel
Cage Material: Steel /Copper /Nylon Cage
Seal Type: Open
Weight: 0.26kg
Aligning: Aligning Bearing
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

self aligning bearing

What is the role of cage design and materials in self-aligning bearing performance and durability?

The cage design and materials used in self-aligning bearings play a crucial role in determining their performance and durability. Here’s a detailed explanation:

  • Guiding and Retaining Rolling Elements:

The primary function of the cage in a self-aligning bearing is to guide and retain the rolling elements, such as balls or rollers, in their proper positions. The cage prevents the rolling elements from contacting and rubbing against each other, ensuring smooth and controlled movement within the bearing. By providing precise spacing and alignment, the cage maintains the integrity of the bearing assembly and optimizes load distribution. It also minimizes the risk of damage or premature wear caused by improper positioning or collision of the rolling elements.

  • Reducing Friction and Heat Generation:

The cage design and materials can significantly impact the friction and heat generation within the self-aligning bearing. An efficient cage design ensures proper lubrication distribution by allowing the lubricant to reach all the critical contact points between the rolling elements and raceways. This reduces friction and minimizes the associated heat generation, leading to improved overall bearing efficiency and reduced energy losses. Additionally, the choice of materials for the cage should consider factors such as low friction coefficients and good thermal conductivity to further optimize performance.

  • Maintaining Alignment and Stability:

Self-aligning bearings are designed to accommodate misalignment between the shaft and the housing. The cage plays a vital role in maintaining the alignment and stability of the rolling elements, ensuring that they stay properly seated and aligned during operation. A well-designed cage provides sufficient space and support for the rolling elements to adjust and align themselves, even under dynamic conditions or when subjected to external forces. This enables the self-aligning bearing to continue operating smoothly and efficiently, minimizing the risk of excessive stress, wear, or premature failure.

  • Enhancing Durability and Service Life:

The cage design and materials significantly impact the durability and service life of self-aligning bearings. A robust and durable cage is essential for withstanding the loads, impact forces, and vibrations that can occur during operation. The cage should be resistant to wear, fatigue, and corrosion to ensure long-term performance and reliability. By selecting appropriate cage materials, such as high-strength steels, thermoplastics, or engineered polymers, manufacturers can enhance the durability and service life of self-aligning bearings in various operating conditions.

  • Reducing Weight and Inertia:

The cage design and materials also influence the weight and inertia of the self-aligning bearing. Lighter cage materials, such as certain polymers or composite materials, can help reduce the overall weight of the bearing assembly. This has several benefits, including lower energy consumption, reduced centrifugal forces, and improved dynamic performance. By minimizing the weight and inertia of the cage, self-aligning bearings can operate at higher speeds, exhibit improved response times, and potentially achieve higher levels of performance and efficiency.

Overall, the cage design and materials used in self-aligning bearings are critical factors in determining their performance, durability, and overall efficiency. A well-designed cage facilitates proper guidance and retention of the rolling elements, reduces friction and heat generation, maintains alignment and stability, enhances durability and service life, and contributes to overall weight optimization. By considering the specific application requirements and selecting the appropriate cage design and materials, engineers can optimize the performance and durability of self-aligning bearings in a wide range of industrial applications.

self aligning bearing

Can self-aligning bearings be customized or modified for unique industrial needs?

Yes, self-aligning bearings can be customized or modified to meet unique industrial needs. Here’s a detailed explanation:

  • Customized Designs:

Manufacturers of self-aligning bearings often offer customization options to accommodate specific industrial requirements. These customization options can include:

  • Size and Dimensions: Self-aligning bearings can be customized to different sizes and dimensions, allowing them to fit specific equipment or space constraints within an industrial setting.
  • Load Capacity: Manufacturers can modify self-aligning bearings to handle higher or lower load capacities based on the unique demands of an application. This can involve altering the bearing’s internal geometry, material selection, or heat treatment processes.
  • Operating Conditions: Customizations can be madeto enhance the performance of self-aligning bearings in specific operating conditions. For example, the bearing’s materials, lubrication, or sealing arrangements can be tailored to withstand extreme temperatures, corrosive environments, or high levels of contamination.
  • Mounting Configurations: Self-aligning bearings can be customized to meet specific mounting requirements. This may involve modifying the bearing’s outer ring, inner ring, or flange configurations to ensure proper fit and alignment within a particular industrial setup.
  • Sealing and Protection: Manufacturers can provide customized sealing arrangements to prevent the ingress of contaminants or protect the bearing from harsh external conditions. This can include adding specialized seals, shields, or coatings to enhance the bearing’s durability and longevity.
  • Lubrication: The lubrication requirements of self-aligning bearings can be customized based on the application’s specific needs. Manufacturers can offer different lubrication options, such as solid lubricants or specialized greases, to optimize performance and minimize maintenance requirements.
  • Collaboration with Manufacturers:

When unique industrial needs arise, it is advisable to collaborate closely with the bearing manufacturer or consult with bearing experts. They can provide technical expertise and guidance to assess the specific requirements and propose suitable customizations or modifications to the self-aligning bearings.

It is important to note that customization or modification of self-aligning bearings may involve additional costs and lead time for manufacturing. Therefore, a thorough evaluation of the application’s needs, cost-benefit analysis, and discussions with the manufacturer are essential to determine the feasibility and effectiveness of the customization process.

By leveraging the customization options offered by bearing manufacturers and working in collaboration with experts, self-aligning bearings can be tailored to meet the unique demands of various industries, ensuring optimal performance, reliability, and longevity in specific industrial applications.

self aligning bearing

Can you explain the advantages and unique features of self-aligning bearings?

Self-aligning bearings offer several advantages and unique features that make them suitable for a wide range of applications. Here’s a detailed explanation of the advantages and unique features of self-aligning bearings:

  • Misalignment Compensation:

One of the primary advantages of self-aligning bearings is their ability to accommodate misalignment between the shaft and the housing. This includes angular misalignment, axial misalignment, and shaft deflection. The self-aligning design allows the bearing to adjust its position and compensate for these misalignments, ensuring smooth operation and reducing stress on the bearing components.

  • Reduced Friction and Wear:

Self-aligning bearings help reduce friction and wear in machinery. By accommodating misalignment, they distribute the load more evenly across the rolling elements and raceways, minimizing localized stresses. This results in lower friction, reduced wear, and longer bearing life. Additionally, the self-aligning capability helps prevent excessive heat generation, which can further contribute to reduced friction and wear.

  • Shock and Vibration Absorption:

Self-aligning bearings have the unique ability to absorb shocks and vibrations that occur during operation. The spherical outer ring raceway allows the bearing to move and adjust its position, effectively dampening the impact of shocks and vibrations. This helps improve the overall stability of the machinery, reduces the transmission of vibrations, and protects other components from excessive forces.

  • Easy Installation and Maintenance:

Self-aligning bearings are relatively easy to install and maintain. During installation, their self-aligning capability simplifies the alignment process, as slight misalignments can be accommodated. This saves time and effort in achieving precise alignment. Additionally, self-aligning bearings are typically designed for easy maintenance, allowing for straightforward tasks such as re-greasing or replacement without requiring complex disassembly.

  • Wide Application Range:

Self-aligning bearings are versatile and find applications in various industries and machinery. They are commonly used in applications where misalignment is expected, such as in heavy machinery, conveyor systems, agricultural equipment, and mining operations. The ability to accommodate misalignment makes self-aligning bearings suitable for challenging environments and dynamic operating conditions.

  • Cost-Effective Solution:

Self-aligning bearings offer a cost-effective solution in many applications. Their ability to compensate for misalignment helps prevent premature failure and reduces the need for frequent maintenance or realignment. This can result in cost savings by extending the bearing’s service life, improving overall machinery reliability, and reducing downtime for repairs or replacements.

In summary, self-aligning bearings provide advantages such as misalignment compensation, reduced friction and wear, shock and vibration absorption, easy installation and maintenance, wide application range, and cost-effectiveness. These unique features make them a valuable choice for various industries and applications where misalignment and dynamic operating conditions are present.

China Professional Manufacturer Wholesale Self-Aligning Ball Bearing 1322K H322 100X240X50mm Good Reputation   bearing blockChina Professional Manufacturer Wholesale Self-Aligning Ball Bearing 1322K H322 100X240X50mm Good Reputation   bearing block
editor by CX 2024-04-12

China Good quality 2216 Hot Sale Self-Aligning Ball Bearing bearing block

Product Description

Bearingstypes 2216
new types 2216
old types 1516 bearing
productstypes 2216
categories Self-aligningBallBearings
brands ZGXSY
ID d ( mm ) 80
OD D ( mm ) 140
thickness B ( mm ) 33

About Self-aligning Ball Bearing
Self-aligning ball bearings have 2 rows of balls and a common sphered raceway in the outer ring. The bearings are insensitive to angular misalignment of the shaft relative to the housing. 

Self-aligning ball bearings generate less friction than any other type of rolling bearing, which enables them to run cooler even at high speeds.

Self aligning ball bearings are non separable double-row radial bearings:
Excellent alignment compensation due to the spherical outer ring raceway 
Suitable for low to medium radial loads and low thrust loads
Available in open and sealed versions, as well as in tapered bore (suffix K)
Standards: DIN 616, DIN 630
Series: 1200, 1300, 2200, 2300, 11200, 11300
Application examples: agricultural machinery, chemistry, pumps, etc
 

Parameters

Bearing No. Boundary Dimensions Mass
mm kg
d D B
2200 10 30 14 0.047
2201 12 32 14 0.051
2202 15 35 14 0.06
2203 17 40 16 0.088
2204 20 47 18 0.14
2204K 20 47 18 0.137
2205 25 52 18 0.157
2205K 25 52 18 0.153
2206 30 62 20 0.256
2206K 30 62 20 0.25
2207 35 72 23 0.392
2207K 35 72 23 0.382
2208 40 80 23 0.493
2208K 40 80 23 0.482
2209 45 85 23 0.54
2209K 45 85 23 0.528
2210 50 90 23 0.583
2210K 50 90 23 0.569
2211 55 100 25 0.787
2211K 55 100 25 0.769
2212 60 110 28 1.08
2212K 60 110 28 1.06
2213 65 120 31 1.44
2213K 65 120 31 1.41
2214 70 125 31 1.52
2215 75 130 31 1.58
2215K 75 130 31 1.54
2216 80 140 33 1.99
2216K 80 140 33 1.95
2217 85 150 36 2.54
2217K 85 150 36 2.49
2218 90 160 40 3.19
2218K 90 160 40 3.12
2219 95 170 43 3.89
2219K 95 170 43 3.8
2220 100 180 46 4.65
2220K 100 180 46 4.54
2221 105 190 50 6.07
2222 110 200 53 7.1
2222K 110 200 53 6.94

We also supply & produce
1.Deep groove ball bearing–              60,62,63,64,67,68,69,160 series
2.Angular contact ball bearing–        single row, double row,high precision
3.Self-aligning ball bearing–              12,13,14,22,23 series
4.Thrust ball bearing–                         511,512,513,514 series                
5.Spherical roller bearing–                213,223,222,223,230,240,231series
6.Cylindrical roller bearing–              N,NH,NF,NJ,NUH,EG,NN,NNU series
7.Taper roller bearing–                       30,31,32,33,LM,HM series
8.Needle roller bearing–                    K,K-TN,K-ZW series
9.Linear CZPT rail block bearing–      LR,SHS,SSR,SHW,SRS,HSR HRW series
10.Linear bush bearing–                      LM,LME,LMF,LMK,LMH,SC,SL,SK series
11.Eccentric bearing–                          15UZ,22UZ,25UZ,60UZ,65UZ,607,610 series
12.Adapter sleeve–                               H,AH series
13.Slewing bearing–                             01,02,11,13 series

Advantages and Features
1.       XSY bearing Co., Ltd. has its own factory. We make sure to offer you the most competitive price with the best products.
2.       XSY bearing Co., Ltd. has a professional R&D team and an after-sale team, so what you buy is top-end, and what you use is quality & service guaranteed.
3.       XSY bearing Co., Ltd. is a bearing manufacturer since 1990. 26 years of rich experience makes us more professional.
4.       Automated production lines insure the unified quality and low cost and delivery time.
5.       The bearing is long durability, high speed and low noise.
6.       OEM & ODM are available.
7.       All kinds of bearing samples are available. 

Aout us
ZheJiang XSY bearing Co., Ltd. is an enterprise majoring in the manufacturing of precision bearings. It has a integrate service chain of research, producing and sales. The bearings with brand trademark of “ZGXSY” win good quality reputation in domestic bearing market. The company is equipped with modern production facilities and advanced testing instruments, mainly specific to imported top-range products. We professionally produce precise bearings such as spherical roller bearings, thrust ball bearings, deep groove ball bearings, cylindrical roller bearings, tapered roller bearings, thrust spherical roller bearings and so on. The productions are widely used as auxiliary products in metallurgy, electrical machine, mine, petroleum, chemical, coal, cement, paper making, wind electricity, heavy machinery, engineering machinery, port machinery and other industries.
Packaging & Shipments
Packaging Details: 
 1.tube /plastic bag+box+cartons+pallets
2.plastic bag+single box+cartons+pallets
3.industrial packing+cartons+pallets
Delivery Details:
 Less than 1000PCS, deliver  within 5 days by Express or Airplane.
 More than 1000PCS, deliver within 15 days by sea.

Application
As their roller linearly come into contact with inner and outer ring with less coeffcient frictiion, these bearings have very good capacity of radial load, suitable for electric motors, automobiles, tasnsmission shafts, gear shafts and so on. Double row cylindrical roller bearings are good at the spindles of machine tools.

FAQ
 1. Are you a factory or a trading company?
 ZheJiang XSY Bearing Co., Ltd. is a professional manufacture of deep groove ball bearings and other bearings.
 2. Is OEM available?
 Yes, OEM is available. We have professional designer to help your brand promotion. 
 3. Is the sample available?
 Yes, samples are available for you to test the quality.
 4. Have the products been tested before shipping?
 Yes, all of our bearings have been tested before delivery.
 5. How long is your delivery time?
 As mentioned above, there are different types of shipping for your order. We make sure to deliver goods once all products are produced and tested.
 6. What is your terms of payment ?
 You can pay by T/T, L/C, Westunion, Paypal,etc., and it can be negotiated according to different orders with different amount.
 7. Can we visit your factory ?
 Sure. Welcome to XSY Bearing Co., Ltd. and offer your kind guidance.
8. What about after-service ?   
We stress on service of our products, and have a perfect after-sale service system. We set up corresponding mchanism, in order to release and warm the consummers rapidly and effectively when the products go wrong. We will trace the cause if products have problem. after confirming the detail, we would find out a solution for it.
9.How to stock and maintenance my bearings?
Do not store bearings directly on concrete floors, where water can condense and collect on the bearing;
Store the bearings on a pallet or shelf, in an area where the bearings will not be subjected to high humidityor extreme temperature that may result in condensation forming;
Always put oiled paper or, if not available, put plastic sheets between rollers and cup races of tapered roller bearings.

 
Website:xsybearing

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Weight: 1.58kg
Rolling Body: Ball Bearings
The Number of Rows: Double
Outer Dimension: Medium and Large(120-190mm)
Material: Bearing Steel
Spherical: Aligning Bearings
Samples:
US$ 1.36/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

self aligning bearing

How do innovations and advancements in self-aligning bearing technology impact their use?

Advancements and innovations in self-aligning bearing technology have a significant impact on their use in various industries. Here’s a detailed explanation:

  • Improved Performance:

Innovations in self-aligning bearing technology often result in improved performance characteristics. These advancements can include:

  • Load Capacity: New bearing designs and materials can enhance the load-carrying capacity of self-aligning bearings, allowing them to withstand higher loads or operate under more demanding conditions.
  • Speed Capability: Advancements in bearing manufacturing techniques and materials can increase the maximum rotational speed at which self-aligning bearings can operate effectively, enabling their use in high-speed applications.
  • Friction Reduction: Innovations in bearing design, lubrication, and surface treatments contribute to reducing friction and energy losses, resulting in improved efficiency and reduced operating costs.
  • Sealing and Contamination Resistance: New sealing technologies and materials can enhance the sealing performance of self-aligning bearings, providing better protection against contaminants, moisture, and harsh environmental conditions.
  • Temperature and Corrosion Resistance: Advances in bearing materials and coatings enable self-aligning bearings to withstand extreme temperatures, aggressive chemicals, and corrosive environments, expanding their range of applications.
  • Extended Service Life:

Innovations in self-aligning bearing technology often result in improved durability and longevity. These advancements can include:

  • Materials: The development of new bearing materials, such as advanced steels, ceramics, or composites, can significantly enhance the bearing’s resistance to wear, fatigue, and surface damage, leading to extended service life.
  • Lubrication: Advancements in lubrication technologies, such as the use of solid lubricants or advanced grease formulations, can provide better film formation, reduce friction, and minimize wear, thereby increasing the bearing’s operating life.
  • Surface Treatments: Innovative surface treatments, such as coatings or finishes, can improve the bearing’s resistance to corrosion, wear, and fretting, contributing to longer service intervals and reduced maintenance requirements.
  • Condition Monitoring: The integration of sensor technologies and data analytics in self-aligning bearings enables real-time monitoring of operating conditions, allowing for proactive maintenance and early detection of potential failures, thus maximizing the bearing’s service life.
  • Application Expansion:

Advancements in self-aligning bearing technology often lead to an expansion of their application range. These advancements can include:

  • New Industries: Innovations in self-aligning bearing technology can enable their use in industries or applications where they were previously not feasible. This opens up opportunities in emerging sectors, such as renewable energy, electric vehicles, robotics, or medical devices.
  • Challenging Environments: Improved performance characteristics, such as enhanced sealing, temperature resistance, or contamination resistance, allow self-aligning bearings to be deployed in challenging environments, including offshore installations, high-temperature processes, or chemically aggressive applications.
  • Specialized Applications: Advancements in self-aligning bearing technology can lead to the development of specialized bearing variants tailored for specific applications, such as high-speed machining, precision equipment, or demanding industrial automation systems.

Overall, innovations and advancements in self-aligning bearing technology bring about enhanced performance, extended service life, and expanded application possibilities. These advancements drive improvements in industrial productivity, reliability, and efficiency, making self-aligning bearings a valuable component in a wide range of industries and applications.

self aligning bearing

Can you explain the installation and alignment considerations for self-aligning bearings?

Proper installation and alignment are crucial for the optimal performance and longevity of self-aligning bearings. Here’s a detailed explanation of the installation and alignment considerations:

  • Pre-Installation Preparation:

Prior to the installation of self-aligning bearings, it is essential to ensure a clean and suitable working environment. Here are some key considerations:

  • Cleanliness: The work area should be clean and free from dust, dirt, and contaminants to prevent the ingress of foreign particles during the installation process.
  • Tools and Equipment: Prepare the necessary tools and equipment required for the installation, including suitable lifting devices, torque wrenches, and lubrication apparatus.
  • Inspection: Thoroughly inspect the bearing and its components for any signs of damage or defects. Replace any worn or damaged parts before proceeding with the installation.
  • Lubrication: Apply the recommended lubricant to the bearing and ensure that it is properly distributed before installation. Lubrication helps reduce friction, prevent excessive wear, and facilitate smooth operation.
  • Mounting Considerations:

When mounting self-aligning bearings, it is important to follow certain guidelines to ensure proper fit and alignment:

  • Shaft and Housing Tolerances: Check the shaft and housing tolerances to ensure they comply with the specifications provided by the bearing manufacturer. Proper tolerances help achieve the correct fit and prevent excessive clearance or interference.
  • Shaft and Housing Preparation: Clean the shaft and housing surfaces and remove any burrs or rough edges that could interfere with the bearing’s seating. Ensure that the shaft and housing are machined to the recommended tolerances and finishes.
  • Mounting Method: There are various methods for mounting self-aligning bearings, including press fitting, thermal expansion, and hydraulic mounting. Follow the manufacturer’s instructions and recommended mounting method to ensure a secure and accurate fit.
  • Sealing: If the self-aligning bearing has integral seals or shields, ensure that they are correctly positioned and aligned during installation. Proper sealing helps protect the bearing against contaminants and extends its service life.
  • Tightening: When tightening the bearing onto the shaft or in the housing, use the recommended torque values provided by the manufacturer. Over-tightening can lead to excessive preload or damage, while under-tightening can result in insufficient seating and compromised performance.
  • Alignment Considerations:

Proper alignment is crucial for self-aligning bearings to function optimally. Here are some alignment considerations:

  • Angular Misalignment: Self-aligning bearings can accommodate angular misalignment to a certain degree. However, it is important to keep the misalignment within the manufacturer’s specified limits to prevent excessive stress and premature wear.
  • Shaft Deflection: Consider the potential shaft deflection that may occur during operation and ensure that the self-aligning bearing can handle the expected deflection without exceeding its capacity. This may involve selecting a bearing with appropriate load-carrying capacity and considering additional support or stabilization measures.
  • Alignment Verification: After installation, verify the alignment of the self-aligning bearing by measuring the axial and radial runout using appropriate alignment tools. Adjust the positioning if necessary to achieve the desired alignment within the specified tolerances.

By following these installation and alignment considerations, you can ensure the proper fit, alignment, and performance of self-aligning bearings. Adhering to the manufacturer’s guidelines and best practices helps maximize the lifespan and reliability of the bearings in various applications.

self aligning bearing

How do self-aligning bearings compensate for misalignment in machinery?

Self-aligning bearings are designed to compensate for misalignment in machinery, allowing them to accommodate angular misalignment, axial misalignment, and shaft deflection. Here’s a detailed explanation of how self-aligning bearings achieve misalignment compensation:

  • Spherical Outer Ring Raceway:

The key feature of self-aligning bearings is their spherical outer ring raceway. This raceway is designed to have a curvature that matches the spherical shape of the rolling elements, such as balls or rollers. The spherical outer ring raceway allows the bearing to tilt or swivel in response to misalignment, enabling it to self-align with the mating components.

  • Rolling Element Design:

The rolling elements in self-aligning bearings are carefully designed to facilitate misalignment compensation. For example, spherical roller bearings have barrel-shaped rollers, while self-aligning ball bearings have two rows of balls. These rolling elements can adjust their positions within the bearing, redistributing the load and accommodating misalignment between the shaft and the housing.

  • Internal Clearance:

Self-aligning bearings often have a larger internal clearance compared to fixed or non-self-aligning bearings. This additional clearance provides space for the bearing components to move and adjust their positions during misalignment. The internal clearance allows the bearing to properly distribute the load, reduce friction, and prevent excessive stress on the rolling elements and raceways.

  • Flexible Mounting:

Self-aligning bearings offer flexibility in their mounting arrangements. They can tolerate slight misalignments during installation, which simplifies the alignment process. This flexibility is particularly beneficial in applications where thermal expansion, shaft deflection, or other dynamic factors may cause misalignment during operation.

  • Load Distribution:

When misalignment occurs, self-aligning bearings distribute the load more evenly across the rolling elements and raceways. This even load distribution helps reduce localized stresses and minimizes the risk of premature failure. By accommodating misalignment, self-aligning bearings allow for smoother operation and improved reliability in machinery.

It’s important to note that while self-aligning bearings can compensate for certain degrees of misalignment, there are limits to their misalignment capability. Excessive misalignment beyond the bearing’s specified limits can lead to increased friction, reduced bearing life, and potential damage. Therefore, it is crucial to follow the manufacturer’s guidelines and recommendations regarding misalignment limits and operating conditions to ensure optimal performance and longevity of self-aligning bearings in machinery.

China Good quality 2216 Hot Sale Self-Aligning Ball Bearing   bearing blockChina Good quality 2216 Hot Sale Self-Aligning Ball Bearing   bearing block
editor by CX 2024-04-04

China Custom Auto Parts Self-Aligning Spherical Roller Bearing/Auto Bearing 21306 to 21310 bearing block

Product Description

 

Auto Parts Self-Aligning Spherical Roller Bearing/Auto Bearing 21306 to 21310

About Spherical Roller Bearing
1): CZPT to accommodate misalignment
2): Suitable for high axial and some radial loads
3): Relatively high speed ratings
4): type : YM (CA,CAM,EAS ) ,YMB ,MB,CJ(CC CD RH) ,E (E1)
5): Application examples: Heavy vertical shafts, injection moulding machines, etc.
 

New Item Old Item Structure Specifications(dxDxT)mm Weight/kg
22207 3507 MB/CA/CC/EK/CK/CMW33 35x72x23 0.43
22208 3508 MB/CA/CC/E/K/CK/CMW33 40X80X23 0.55
22209 3509 MB/CA/CC/E/K/CK/CMW33 45X85X23 0.59
22210 3510 MB/CA/CC/E/K/CK/CMW33 50X90X23 0.64
22211 3511 MB/CA/CC/E/K/CK/CMW33 55X100X25 0.88
22212 3512 MB/CA/CC/E/K/CK/CMW33 60X110X28 1.19
22213 3513 MB/CA/CC/E/K/CK/CMW33 65X120X31 1.6
22214 3514 MB/CA/CC/E/K/CK/CMW33 70X125X31 1.68
22215 3515 MB/CA/CC/E/K/CK/CMW33 75X130X31 1.75
22216 3516 MB/CA/CC/E/K/CK/CMW33 80X140X33 2.12
22217 3517 MB/CA/CC/E/K/CK/CMW33 85X150X36 2.79
22218 3518 MB/CA/CC/E/K/CK/CMW33 90X160X40 3.78
22219 3519 MB/CA/CC/E/K/CK/CMW33 95X170X43 4.31
22220 3520 MB/CA/CC/E/K/CK/CMW33 100X180X46 5.06
22222 3522 MB/CA/CC/E/K/CK/CMW33 110X200X53 7.4
22224 3524 MB/CA/CC/E/K/CK/CMW33 120X215X58 9.267
22226 3526 MB/CA/CC/E/K/CK/CMW33 130X230X64 11.5
22228 3528 MB/CA/CC/E/K/CK/CMW33 140X250X68 14.5
22230 3530 MB/CA/CC/E/K/CK/CMW33 150X270X73 18.4
22232 3532 MB/CA/CC/E/K/CK/CMW33 160X260X80 22.3
22234 3534 MB/CA/CC/E/K/CK/CMW33 170X310X86 28.7
22236 3536 MB/CA/CC/E/K/CK/CMW33 180X320X86 30.5
22238 3538 MB/CA/CC/E/K/CK/CMW33 190X320X92 35.55
22240 3540 MB/CA/CC/E/K/CK/CMW33 200X360X98 44.7
22244 3544 MB/CA/CC/E/K/CK/CMW33 220X400X108 63
22248 3548 MB/CA/CC/E/K/CK/CMW33 240X440X120 83.2
22252 3552 MB/CA/CC/E/K/CK/CMW33 260X480X130 105
22256 3556 MB/CA/CC/E/K/CK/CMW33 280X500X130 126
22260 3560 MB/CA/CC/E/K/CK/CMW33 300X540X140 143
22306 3606 MB/CA/CC/E/K/CK/CMW33 30x70x22 0.37
22307 3607 MB/CA/CC/E/K/CK/CMW33 35x80x31 0.75
22308 3608 MB/CA/CC/E/K/CK/CMW33 40x90x33 1.07
22309 3609 MB/CA/CC/E/K/CK/CMW33 45x90x33 1.4
22310 3610 MB/CA/CC/E/K/CK/CMW33 50x110x40 1.83
22311 3611 MB/CA/CC/E/K/CK/CMW33 55x120x43 2.4
22312 3612 MB/CA/CC/E/K/CK/CMW33 60x130x46 2.88
22313 3613 MB/CA/CC/E/K/CK/CMW33 65x140x48 3.52
22314 3614 MB/CA/CC/E/K/CK/CMW33 70x150x51 4.21
22315 3615 MB/CA/CC/E/K/CK/CMW33 75x160x55 5.47
22316 3616 MB/CA/CC/E/K/CK/CMW33 80x170x58 6.19
22317 3617 MB/CA/CC/E/K/CK/CMW33 85x180x60 7.5
22318 3618 MB/CA/CC/E/K/CK/CMW33 90x190x64 8.96
22319 3619 MB/CA/CC/E/K/CK/CMW33 95x200x67 9.93
22320 3620 MB/CA/CC/E/K/CK/CMW33 100x215x73 13
22322 3622 MB/CA/CC/E/K/CK/CMW33 110x240x80 17.95
22324 3624 MB/CA/CC/E/K/CK/CMW33 120x246x80 22.4
22326 3626 MB/CA/CC/E/K/CK/CMW33 130x280x93 28.2
22328 3628 MB/CA/CC/E/K/CK/CMW33 140x300x102 35.12
22330 3630 MB/CA/CC/E/K/CK/CMW33 150x320x108 43.7
22332 3632 MB/CA/CC/E/K/CK/CMW33 160x340x114 52.2
22334 3634 MB/CA/CC/E/K/CK/CMW33 170x360x120 60.7

Our packing:
* Industrial pakage+outer carton+pallets
* sigle box+outer carton+pallets
* Tube package+middle box+outer carton+pallets
* According to your requirments

     

       We have been engaged in foreign trade for more than 6 years and are well-known enterprises in ZheJiang
Province. The fixed assets of the machine are more than 2 million US dollars, and the annual foreign trade
sales volume exceeds 2 million US dollars.
     We have extensive cooperation with countries in Asia, Europe, and the Americas. Including Russia, Ukraine,
elarus, Kazakhstan, Uzbekistan, Tajikistan, Spain, Mexico,India, Pakistan, Turkey, Vietnam and other industrial
areas.
                                                                                           

SAMPLES
1.Samples quantity: 1-10 pcs are available.
2.Free samples: It depends on the model NO., material and quantity. Some of the bearings samples need client to pay   samples charge and shipping cost.
3.It’s better to start your order with Trade Assurance to get full protection for your samples order.

CUSTOMIZED
The customized LOGO or drawing is acceptable for us.

MOQ
1.MOQ: 10 pcs mix different standard bearings.
2.MOQ:  3000 pcs customized your brand bearings.

OEM POLICY
1.We can printing your brand (logo,artwork)on the shield or laser engraving your brand on the shield.
2.We can custom your packaging according to your design
3.All copyright own by clients and we promised don’t disclose any info.

SUPORT
Please visit our bearings website, we strongly encourge that you can communicate with us through email,thanks!

We have all kinds of bearings, just tell me your item number and quantity,best price will be offered to you soon
The material of the bearings, precision rating, seals type,OEM service,etc, all of them we can make according to your requirement.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Vibration: Z1V1 Z2V2 Z3V3
Applicatio: Automotive
Feature: Low Price, High Speed, Long Life
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

self aligning bearing

What is the role of cage design and materials in self-aligning bearing performance and durability?

The cage design and materials used in self-aligning bearings play a crucial role in determining their performance and durability. Here’s a detailed explanation:

  • Guiding and Retaining Rolling Elements:

The primary function of the cage in a self-aligning bearing is to guide and retain the rolling elements, such as balls or rollers, in their proper positions. The cage prevents the rolling elements from contacting and rubbing against each other, ensuring smooth and controlled movement within the bearing. By providing precise spacing and alignment, the cage maintains the integrity of the bearing assembly and optimizes load distribution. It also minimizes the risk of damage or premature wear caused by improper positioning or collision of the rolling elements.

  • Reducing Friction and Heat Generation:

The cage design and materials can significantly impact the friction and heat generation within the self-aligning bearing. An efficient cage design ensures proper lubrication distribution by allowing the lubricant to reach all the critical contact points between the rolling elements and raceways. This reduces friction and minimizes the associated heat generation, leading to improved overall bearing efficiency and reduced energy losses. Additionally, the choice of materials for the cage should consider factors such as low friction coefficients and good thermal conductivity to further optimize performance.

  • Maintaining Alignment and Stability:

Self-aligning bearings are designed to accommodate misalignment between the shaft and the housing. The cage plays a vital role in maintaining the alignment and stability of the rolling elements, ensuring that they stay properly seated and aligned during operation. A well-designed cage provides sufficient space and support for the rolling elements to adjust and align themselves, even under dynamic conditions or when subjected to external forces. This enables the self-aligning bearing to continue operating smoothly and efficiently, minimizing the risk of excessive stress, wear, or premature failure.

  • Enhancing Durability and Service Life:

The cage design and materials significantly impact the durability and service life of self-aligning bearings. A robust and durable cage is essential for withstanding the loads, impact forces, and vibrations that can occur during operation. The cage should be resistant to wear, fatigue, and corrosion to ensure long-term performance and reliability. By selecting appropriate cage materials, such as high-strength steels, thermoplastics, or engineered polymers, manufacturers can enhance the durability and service life of self-aligning bearings in various operating conditions.

  • Reducing Weight and Inertia:

The cage design and materials also influence the weight and inertia of the self-aligning bearing. Lighter cage materials, such as certain polymers or composite materials, can help reduce the overall weight of the bearing assembly. This has several benefits, including lower energy consumption, reduced centrifugal forces, and improved dynamic performance. By minimizing the weight and inertia of the cage, self-aligning bearings can operate at higher speeds, exhibit improved response times, and potentially achieve higher levels of performance and efficiency.

Overall, the cage design and materials used in self-aligning bearings are critical factors in determining their performance, durability, and overall efficiency. A well-designed cage facilitates proper guidance and retention of the rolling elements, reduces friction and heat generation, maintains alignment and stability, enhances durability and service life, and contributes to overall weight optimization. By considering the specific application requirements and selecting the appropriate cage design and materials, engineers can optimize the performance and durability of self-aligning bearings in a wide range of industrial applications.

self aligning bearing

Can you explain the installation and alignment considerations for self-aligning bearings?

Proper installation and alignment are crucial for the optimal performance and longevity of self-aligning bearings. Here’s a detailed explanation of the installation and alignment considerations:

  • Pre-Installation Preparation:

Prior to the installation of self-aligning bearings, it is essential to ensure a clean and suitable working environment. Here are some key considerations:

  • Cleanliness: The work area should be clean and free from dust, dirt, and contaminants to prevent the ingress of foreign particles during the installation process.
  • Tools and Equipment: Prepare the necessary tools and equipment required for the installation, including suitable lifting devices, torque wrenches, and lubrication apparatus.
  • Inspection: Thoroughly inspect the bearing and its components for any signs of damage or defects. Replace any worn or damaged parts before proceeding with the installation.
  • Lubrication: Apply the recommended lubricant to the bearing and ensure that it is properly distributed before installation. Lubrication helps reduce friction, prevent excessive wear, and facilitate smooth operation.
  • Mounting Considerations:

When mounting self-aligning bearings, it is important to follow certain guidelines to ensure proper fit and alignment:

  • Shaft and Housing Tolerances: Check the shaft and housing tolerances to ensure they comply with the specifications provided by the bearing manufacturer. Proper tolerances help achieve the correct fit and prevent excessive clearance or interference.
  • Shaft and Housing Preparation: Clean the shaft and housing surfaces and remove any burrs or rough edges that could interfere with the bearing’s seating. Ensure that the shaft and housing are machined to the recommended tolerances and finishes.
  • Mounting Method: There are various methods for mounting self-aligning bearings, including press fitting, thermal expansion, and hydraulic mounting. Follow the manufacturer’s instructions and recommended mounting method to ensure a secure and accurate fit.
  • Sealing: If the self-aligning bearing has integral seals or shields, ensure that they are correctly positioned and aligned during installation. Proper sealing helps protect the bearing against contaminants and extends its service life.
  • Tightening: When tightening the bearing onto the shaft or in the housing, use the recommended torque values provided by the manufacturer. Over-tightening can lead to excessive preload or damage, while under-tightening can result in insufficient seating and compromised performance.
  • Alignment Considerations:

Proper alignment is crucial for self-aligning bearings to function optimally. Here are some alignment considerations:

  • Angular Misalignment: Self-aligning bearings can accommodate angular misalignment to a certain degree. However, it is important to keep the misalignment within the manufacturer’s specified limits to prevent excessive stress and premature wear.
  • Shaft Deflection: Consider the potential shaft deflection that may occur during operation and ensure that the self-aligning bearing can handle the expected deflection without exceeding its capacity. This may involve selecting a bearing with appropriate load-carrying capacity and considering additional support or stabilization measures.
  • Alignment Verification: After installation, verify the alignment of the self-aligning bearing by measuring the axial and radial runout using appropriate alignment tools. Adjust the positioning if necessary to achieve the desired alignment within the specified tolerances.

By following these installation and alignment considerations, you can ensure the proper fit, alignment, and performance of self-aligning bearings. Adhering to the manufacturer’s guidelines and best practices helps maximize the lifespan and reliability of the bearings in various applications.

self aligning bearing

How do self-aligning bearings differ from fixed or non-self-aligning bearings?

Self-aligning bearings differ from fixed or non-self-aligning bearings in several ways. Here’s a detailed explanation of the differences between these types of bearings:

  • Design and Construction:

The design and construction of self-aligning bearings are distinct from fixed or non-self-aligning bearings. Self-aligning bearings have a spherical outer ring raceway, which allows for misalignment compensation. In contrast, fixed or non-self-aligning bearings typically have a cylindrical or tapered outer ring raceway, designed for precise alignment between the shaft and the housing.

  • Misalignment Compensation:

The primary difference between self-aligning bearings and fixed or non-self-aligning bearings is their ability to compensate for misalignment. Self-aligning bearings can accommodate angular misalignment, axial misalignment, and shaft deflection, whereas fixed or non-self-aligning bearings have limited tolerance for misalignment and require precise alignment during installation.

  • Load Distribution:

Self-aligning bearings distribute the load more evenly across the rolling elements and raceways, thanks to their ability to accommodate misalignment. This helps reduce localized stresses and minimize the risk of premature failure. Fixed or non-self-aligning bearings, without the ability to compensate for misalignment, may experience uneven loading and increased stress on specific areas, leading to accelerated wear and potential failure.

  • Friction and Wear:

Due to their misalignment compensation capability, self-aligning bearings help reduce friction and wear. Misalignment in fixed or non-self-aligning bearings can cause increased friction and localized wear, leading to reduced bearing life. Self-aligning bearings distribute the load more evenly, minimizing friction and wear on the rolling elements and raceways, resulting in improved reliability and longevity.

  • Application Range:

The different design and misalignment compensation capability of self-aligning bearings make them suitable for a broader range of applications compared to fixed or non-self-aligning bearings. Self-aligning bearings are commonly used in applications where misalignment is expected, such as heavy machinery, conveyor systems, and mining equipment. Fixed or non-self-aligning bearings are typically employed in applications that require precise alignment, such as machine tools or high-precision equipment.

  • Installation and Maintenance:

Self-aligning bearings offer easier installation and maintenance compared to fixed or non-self-aligning bearings. The self-aligning capability of these bearings allows for more flexibility during the installation process, accommodating slight misalignments. In contrast, fixed or non-self-aligning bearings require careful alignment procedures to ensure proper functioning. Additionally, self-aligning bearings are often designed for easier maintenance, enabling tasks such as re-greasing or replacement without extensive disassembly.

In summary, self-aligning bearings differ from fixed or non-self-aligning bearings in their design, misalignment compensation capability, load distribution, friction and wear characteristics, application range, and ease of installation and maintenance. These differences make self-aligning bearings particularly suitable for applications where misalignment is expected or dynamic operating conditions are present.

China Custom Auto Parts Self-Aligning Spherical Roller Bearing/Auto Bearing 21306 to 21310   bearing blockChina Custom Auto Parts Self-Aligning Spherical Roller Bearing/Auto Bearing 21306 to 21310   bearing block
editor by CX 2024-03-07

China factory CZPT CZPT 22316mbk 22317mbk 22318mbk 22319mbk/W33 Self-Aligning Roller Bearing bearing block

Product Description

Detailed Photos

Application

Product Parameters

Specification Steel NO. HRC Chemical composition %  
C Si Mn Mo S P Cr  
GB/T 18254 Gcr 15 61-65 0.95~1.05 0.15~0.35 0.25~0.45 below 0.08 below 0.571 below 0.571 1.40~1.65  
                     
Technical information:                    
Bearing Number Boundary dimensions(mm) Mass(Kg) Bearing Number Boundary dimensions(mm)
  d D B     d D B
222 Series 22205 25 52 18 0.186  223 Series 22308 40 90 33
  22205K 25 52 18 0.182    22308K 40 90 33
  22205KW33C3 25 52 18 0.182    22324K 120 260 86
  22205W33C3 25 52 18 0.186    22324KW33C3 120 260 86
  22206 30 62 20 0.287    22324W33C3 120 260 86
  22206K 30 62 20 0.282    22326 130 280 93
  22206KW33C3 30 62 20 0.282    22326K 130 280 93
  22206W33C3 30 62 20 0.287    22326KW33C3 130 280 93
  22207 35 72 23 0.446    22326W33C3 130 280 93
  22207K 35 72 23 0.437    22328 140 300 102
  22207KW33C3 35 72 23 0.437    22328K 140 300 102
  22207W33C3 35 72 23 0.446    22328KW33C3 140 300 102
  22208 40 80 23 0.526    22328W33C3 140 300 102
  22208K 40 80 23 0.515    22330 150 320 108
  22208KW33C3 40 80 23 0.515    22330K 150 320 108
  22208W33C3 40 80 23 0.526    22330KW33C3 150 320 108
  22209 45 85 23 0.584    22330W33C3 150 320 108
  22209K 45 85 23 0.572    22332 160 340 114
  22209KW33C3 45 85 23 0.572    22332K 160 340 114
  22209W33C3 45 85 23 0.584    22332KW33C3 160 340 114
  22210 50 90 23 0.63    22332W33C3 160 340 114
  22210K 50 90 23 0.616    22334 170 360 120
  22210KW33C3 50 90 23 0.616    22334K 170 360 120
  22210W33C3 50 90 23 0.63    22334KW33C3 170 360 120
  22211 55 100 25 0.808    22334W33C3 170 360 120
  22211K 55 100 25 0.79    22336 180 380 126
  22211KW33C3 55 100 25 0.832    22336K 180 380 126
  22211W33C3 55 100 25 0.808    22336KW33C3 180 380 126
  22212 60 110 28 1.15    22336W33C3 180 380 126
  22212K 60 110 28 1.13    22338 190 400 132
  22212KW33C3 60 110 28 1.13    22338K 190 400 132
  22212W33C3 60 110 28 1.15    22338KW33C3 190 400 132
  22213 65 120 31 1.5    22338W33C3 190 400 132
  22213K 65 120 31 1.47    22340 200 420 138
  22213KW33C3 65 120 31 1.47    22340K 200 420 138
  22213W33C3 65 120 31 1.5    22340KW33C3 200 420 138
  22214 70 125 31 1.55    22340W33C3 200 420 138
  22214K 70 125 31 1.52    22344 220 460 145
  22214KW33C3 70 125 31 1.52    22344K 220 460 145
  22214W33C3 70 125 31 1.55    22344KW33C3 220 460 145
  22215 75 130 31 1.65    22344W33C3 220 460 145
  22215K 75 130 31 1.61    22348 240 500 155
  22215KW33C3 75 130 31 1.61    22348K 240 500 155
  22215W33C3 75 130 31 1.65    22348KW33C3 240 500 155
  22216 80 140 33 1.99    22348W33C3 240 500 155
  22216K 80 140 33 1.94    22352 260 540 165
  22216KW33C3 80 140 33 1.94    22352K 260 540 165
  22216W33C3 80 140 33 1.99    22352KW33C3 260 540 165
  22217 85 150 36 2.49    22352W33C3 260 540 165
  22217K 85 150 36 2.43    22356 280 580 175
  22217KW33C3 85 150 36 2.43    22356K 280 580 175
  22217W33C3 85 150 36 2.49    22356KW33C3 280 580 175
  22218 90 160 40 3.24    22356W33C3 280 580 175
  22218K 90 160 40 3.16    22360 300 620 185
  22218KW33C3 90 160 40 3.16    22360K 300 620 185
  22218W33C3 90 160 40 3.24    22360KW33C3 300 620 185
  22219 95 170 43 4.1    22360W33C3 300 620 185
  22219K 95 170 43 4.01    22308KW33C3 40 90 33
  22219KW33C3 95 170 43 4.01    22308W33C3 40 90 33
  22219W33C3 95 170 43 4.1    22309 45 100 36
  22220 100 180 46 4.95    22309K 45 100 36
  22220K 100 180 46 4.84    22309KW33C3 45 100 36
  22220KW33C3 100 180 46 4.84    22309W33C3 45 100 36
  22220W33C3 100 180 46 4.95    22310 50 110 40
  22222 110 200 53 7.2    22310K 50 110 40
  22222K 110 200 53 7.04    22310KW33C3 50 110 40
  22222KW33C3 110 200 53 7.04    22310W33C3 50 110 40
  22222W33C3 110 200 53 7.2    22311 55 120 43
  22224 120 215 58 9.1    22311K 55 120 43
  22224K 120 215 58 8.89    22311KW33C3 55 120 43
  22224KW33C3 120 215 58 8.89    22311W33C3 55 120 43
  22224W33C3 120 215 58 9.1    22312 60 130 46
  22226 130 230 64 11.2    22312K 60 130 46
  22226K 130 230 64 10.9    22312KW33C3 60 130 46
  22226KW33C3 130 230 64 10.9    22312W33C3 60 130 46
  22226W33C3 130 230 64 11.2    22313 65 140 48
  22228 140 250 68 14    22313K 65 140 48
  22228K 140 250 68 13.7    22313KW33C3 65 140 48
  22228KW33C3 140 250 68 13.7    22313W33C3 65 140 48
  22228W33C3 140 250 68 14    22314 70 150 51
  22230 150 270 73 18.1    22314K 70 150 51
  22230K 150 270 73 17.7    22314KW33C3 70 150 51
  22230KW33C3 150 270 73 17.7    22314W33C3 70 150 51
  22230W33C3 150 270 73 18.1    22315 75 160 55
  22232 160 290 80 22.7    22315K 75 160 55
  22232K 160 290 80 22.2    22315KW33C3 75 160 55
  22232KW33C3 160 290 80 22.2    22315W33C3 75 160 55
  22232W33C3 160 290 80 22.7    22316 80 170 58
  22234 170 310 86 28    22316K 80 170 58
  22234K 170 310 86 27.3    22316KW33C3 80 170 58
  22234KW33C3 170 310 86 27.3    22316W33C3 80 170 58
  22234W33C3 170 310 86 28    22317 85 180 60
  22236 180 320 86 29.3    22317K 85 180 60
  22236K 180 320 86 28.6    22317KW33C3 85 180 60
  22236KW33C3 180 320 86 28.6    22317W33C3 85 180 60
  22236W33C3 180 320 86 29.3    22318 90 190 64
  22238 190 340 92 36.6    22318K 90 190 64
  22238K 190 340 92 35.8    22318KW33C3 90 190 64
  22238KW33C3 190 340 92 35.8    22318W33C3 90 190 64
  22238W33C3 190 340 92 36.6    22319 95 200 67
  22240 200 360 98 44    22319K 95 200 67
  22240K 200 360 98 43    22319KW33C3 95 200 67
  22240KW33C3 200 360 98 43    22319W33C3 95 200 67
  22240W33C3 200 360 98 44    22320 100 215 73
  22244 220 400 108 60.4    22320K 100 215 73
  22244K 220 400 108 59.1    22320KW33C3 100 215 73
  22244KW33C3 220 400 108 59.1    22320W33C3 100 215 73
  22244W33C3 220 400 108 60.4    22322 110 240 80
  22248 240 440 120 81.7    22322K 110 240 80
  22248K 240 440 120 80    22322KW33C3 110 240 80
  22248KW33C3 240 440 120 80    22322W33C3 110 240 80
  22248W33C3 240 440 120 81.7    22324 120 260 86
  22252 260 480 130 106       
  22252K 260 480 130 104           
  22252KW33C3 260 480 130 104           
  22252W33C3 260 480 130 106           
  22256 280 500 130 112           
  22256K 280 500 130 110           
  22256KW33C3 280 500 130 110           
  22256W33C3 280 500 130 112           
  22260 300 540 140 141           
  22260K 300 540 140 138           
  22260KW33C3 300 540 140 138           
  22260W33C3 300 540 140 141           
213 Series 21308 40 90 23 0.705  230 Series 23571 110 170 45
  21308K 40 90 23 0.694    23571K 110 170 45
  21308KW33C3 40 90 23 0.694    23571KW33C3 110 170 45
  21308W33C3 40 90 23 0.705    23571W33C3 110 170 45
  21309 45 100 25 0.927    23571 120 180 46
  21309K 45 100 25 0.912    23571K 120 180 46
  21309KW33C3 45 100 25 0.912    23571KW33C3 120 180 46
  21309W33C3 45 100 25 0.927    23571W33C3 120 180 46
  21310 50 110 27 1.21    23026 130 200 52
  21310K 50 110 27 1.19    23026K 130 200 52
  21310KW33C3 50 110 27 1.19    23026KW33C3 130 200 52
  21310W33C3 50 110 27 1.21    23026W33C3 130 200 52
  21311 55 120 29 1.71    23571 140 210 53
  21311K 55 120 29 1.69    23571K 140 210 53
  21311KW33C3 55 120 29 1.69    23571KW33C3 140 210 53
  21311W33C3 55 120 29 1.71    23571W33C3 140 210 53
  21312 60 130 31 2.1    23030 150 225 56
  21312K 60 130 31 2.07    23030K 150 225 56
  21312KW33C3 60 130 31 2.07    23030KW33C3 150 225 56
  21312W33C3 60 130 31 2.1    23030W33C3 150 225 56
  21313 65 140 33 2.55    23032 160 240 60
  21313K 65 140 33 2.51    23032K 160 240 60
  21313KW33C3 65 140 33 2.51    23032KW33C3 160 240 60
  21313W33C3 65 140 33 2.55    23032W33C3 160 240 60
  21314 70 150 35 3.18    23034 170 260 67
  21314K 70 150 35 3.14    23034K 170 260 67
  21314KW33C3 70 150 35 3.14    23034KW33C3 170 260 67
  21314W33C3 70 150 35 3.18    23034W33C3 170 260 67
  21315 75 160 37 3.81    23036 180 280 74
  21315K 75 160 37 3.76    23036K 180 280 74
  21315KW33C3 75 160 37 3.76    23036KW33C3 180 280 74
  21315W33C3 75 160 37 3.81    23036W33C3 180 280 74
  21316 80 170 39 4.53    23038 190 290 75
  21316K 80 170 39 4.47    23038K 190 290 75
  21316KW33C3 80 170 39 4.47    23038KW33C3 190 290 75
  21316W33C3 80 170 39 4.53    23038W33C3 190 290 75
  21317 85 180 41 5.35    23040 200 310 82
  21317K 85 180 41 5.28    23040K 200 310 82
  21317KW33C3 85 180 41 5.28    23040KW33C3 200 310 82
  21317W33C3 85 180 41 5.35    23040W33C3 200 310 82
  21318 90 190 43 6.3    23044 220 340 90
  21318K 90 190 43 6.21    23044K 220 340 90
  21318KW33C3 90 190 43 6.21    23044KW33C3 220 340 90
  21318W33C3 90 190 43 6.3    23044W33C3 220 340 90
  21319 95 200 45 7.1    23048 240 360 92
  21319K 95 200 45   23048K 240 360 92
  21319KW33C3 95 200 45   23048KW33C3 240 360 92
  21319W33C3 95 200 45 7.1    23048W33C3 240 360 92
  21320 100 215 47 8.89    23052 260 400 104
  21320K 100 215 47 8.78    23052K 260 400 104
  21320KW33C3 100 215 47 8.78    23052KW33C3 260 400 104
  21320W33C3 100 215 47 8.89    23052W33C3 260 400 104
  21322 110 240 50 11.2    23056 280 420 106
  21322K 110 240 50 11.1    23056K 280 420 106
  21322KW33C3 110 240 50 11.1    23056KW33C3 280 420 106
  21322W33C3 110 240 50 11.2    23056W33C3 280 420 106
              23060 300 460 118
              23060K 300 460 118
              23060KW33C3 300 460 118
              23060W33C3 300 460 118
231 Series 23120 100 165 52 4.3  232 Series 23218 90 160 52.4
  23120K 100 165 52 4.16    23218K 90 160 52.4
  23120KW33C3 100 165 52 4.16    23218KW33C3 90 160 52.4
  23120W33C3 100 165 52 4.3    23218W33C3 90 160 52.4
  23122 110 180 56 5.4    23220 100 180 60.3
  23122K 110 180 56 5.22    23220K 100 180 60.3
  23122KW33C3 110 180 56 5.22    23220KW33C3 100 180 60.3
  23122W33C3 110 180 56 5.4    23220W33C3 100 180 60.3
  23124 120 200 62 7.7    23222 110 200 69.8
  23124K 120 200 62 7.46    23222K 110 200 69.8
  23124KW33C3 120 200 62 7.46    23222KW33C3 110 200 69.8
  23124W33C3 120 200 62 7.7    23222W33C3 110 200 69.8
  23126 130 210 64 8.47    23224 120 215 76
  23126K 130 210 64 8.2    23224K 120 215 76
  23126KW33C3 130 210 64 8.2    23224KW33C3 120 215 76
  23126W33C3 130 210 64 8.47    23224W33C3 120 215 76
  23128 140 225 68 10.2    23226 130 230 80
  23128K 140 225 68 9.86    23226K 130 230 80
  23128KW33C3 140 225 68 9.86    23226KW33C3 130 230 80
  23128W33C3 140 225 68 10.2    23226W33C3 130 230 80
  23130 150 250 80 15.6    23228 140 250 88
  23130K 150 250 80 15.1    23228K 140 250 88
  23130KW33C3 150 250 80 15.1    23228KW33C3 140 250 88
  23130W33C3 150 250 80 15.6    23228W33C3 140 250 88
  23132 160 270 86 19.8    23230 150 270 96
  23132K 160 270 86 19.2    23230K 150 270 96
  23132KW33C3 160 270 86 19.2    23230KW33C3 150 270 96
  23132W33C3 160 270 86 19.8    23230W33C3 150 270 96
  23134 170 280 88 21.5    23232 160 290 104
  23134K 170 280 88 20.8    23232K 160 290 104
  23134KW33C3 170 280 88 20.8    23232KW33C3 160 290 104
  23134W33C3 170 280 88 21.5    23232W33C3 160 290 104
  23136 180 300 96 25.1    23234 170 310 110
  23136K 180 300 96 24.2    23234K 170 310 110
  23136KW33C3 180 300 96 24.2    23234KW33C3 170 310 110
  23136W33C3 180 300 96 25.1    23234W33C3 170 310 110
  23138 190 320 104 35.3    23236 180 320 112
  23138K 190 320 104 34.2    23236K 180 320 112
  23138KW33C3 190 320 104 34.2    23236KW33C3 180 320 112
  23138W33C3 190 320 104 35.3    23236W33C3 180 320 112
  23140 200 340 112 43.3    23238 190 340 120
  23140K 200 340 112 42    23238K 190 340 120
  23140KW33C3 200 340 112 42    23238KW33C3 190 340 120
  23140W33C3 200 340 112 43.3    23238W33C3 190 340 120
  23144 220 370 120 53.3    23240 200 360 128
  23144K 220 370 120 51.6    23240K 200 360 128
  23144KW33C3 220 370 120 51.6    23240KW33C3 200 360 128
  23144W33C3 220 370 120 53.3    23240W33C3 200 360 128
  23148 240 400 128 65.8    23244 220 400 144
  23148K 240 400 128 63.8    23244K 220 400 144
  23148KW33C3 240 400 128 63.8    23244KW33C3 220 400 144
  23148W33C3 240 400 128 65.8    23244W33C3 220 400 144
  23152 260 440 144 91.4    23248 240 440 160
  23152K 260 440 144 88.6    23248K 240 440 160
  23152KW33C3 260 440 144 88.6    23248KW33C3 240 440 160
  23152W33C3 260 440 144 91.4    23248W33C3 240 440 160
  23156 280 460 146 97.7    23252 260 480 174
  23156K 280 460 146 94.6    23252K 260 480 174
  23156KW33C3 280 460 146 94.6    23252KW33C3 260 480 174
  23156W33C3 280 460 146 97.7    23252W33C3 260 480 174
  23160 300 500 160 131    23256 280 500 176
  23160K 300 500 160 127    23256K 280 500 176
  23160KW33C3 300 500 160 127    23256KW33C3 280 500 176
  23160W33C3 300 500 160 131    23256W33C3 280 500 176
              23260 300 540 192
              23260K 300 540 192
              23260KW33C3 300 540 192
              23260W33C3 300 540 192
239 Series 23936 180 250 52 8.21  240 Series 24571 120 180 60
  23936K 180 250 52 7.95    24571K30 120 180 60
  23936KW33C3 180 250 52 7.95    24571K30W33C3 120 180 60
  23936W33C3 180 250 52 8.21    24571W33C3 120 180 60
  23938 190 260 52 8.6    24026 130 200 69
  23938K 190 260 52 8.34    24026K30 130 200 69
  23938KW33C3 190 260 52 8.34    24026K30W33C3 130 200 69
  23938W33C3 190 260 52 8.6    24026W33C3 130 200 69
  23940 200 280 60 12.1    24571 140 210 69
  23940K 200 280 60 11.7    24571K30 140 210 69
  23940KW33C3 200 280 60 11.7    24571K30W33C3 140 210 69
  23940W33C3 200 280 60 12.1    24571W33C3 140 210 69
  23944 220 300 60 13.1    24030 150 225 75
  23944K 220 300 60 12.7    24030K30 150 225 75
  23944KW33C3 220 300 60 12.7    24030K30W33C3 150 225 75
  23944W33C3 220 300 60 13.1    24030W33C3 150 225 75
  23948 240 320 60 14    24032 160 240 80
  23948K 240 320 60 13.6    24032K30 160 240 80
  23948KW33C3 240 320 60 13.6    24032K30W33C3 160 240 80
  23948W33C3 240 320 60 14    24032W33C3 160 240 80
  23952 260 360 75 24    24034 170 260 90
  23952K 260 360 75 23.3    24034K30 170 260 90
  23952KW33C3 260 360 75 23.3    24034K30W33C3 170 260 90
  23952W33C3 260 360 75 24    24034W33C3 170 260 90
  23956 280 380 75 26.4    24036 180 280 100
  23956K 280 380 75 25.6    24036K30 180 280 100
  23956KW33C3 280 380 75 25.6    24036K30W33C3 180 280 100
  23956W33C3 280 380 75 26.4    24036W33C3 180 280 100
  23960 300 420 90 40    24038 190 290 100
  23960K 300 420 90 38.7    24038K30 190 290 100
  23960KW33C3 300 420 90 38.7    24038K30W33C3 190 290 100
  23960W33C3 300 420 90 40    24038W33C3 190 290 100
241 Series 24122 110 180 69 7.07    24040 200 310 109
  24122K30 110 180 69 6.96    24040K30 200 310 109
  24122K30W33C3 110 180 69 6.96    24040K30W33C3 200 310 109
  24122W33C3 110 180 69 7.07    24040W33C3 200 310 109
  24124 120 200 80 10.3    24044 220 340 118
  24124K30 120 200 80 10.1    24044K30 220 340 118
  24124K30W33C3 120 200 80 10.1    24044K30W33C3 220 340 118
  24124W33C3 120 200 80 10.3    24044W33C3 220 340 118
  24126 130 210 80 11    24048 240 360 118
  24126K30 130 210 80 10.8    24048K30 240 360 118
  24126K30W33C3 130 210 80 10.8    24048K30W33C3 240 360 118
  24126W33C3 130 210 80 11    24048W33C3 240 360 118
  24128 140 225 85 13.3    24052 260 400 140
  24128K30 140 225 85 13.1    24052K30 260 400 140
  24128K30W33C3 140 225 85 13.1    24052K30W33C3 260 400 140
  24128W33C3 140 225 85 13.3    24052W33C3 260 400 140
  24130 150 250 100 20.2    24056 280 420 140
  24130K30 150 250 100 20    24056K30 280 420 140
  24130K30W33C3 150 250 100 20    24056K30W33C3 280 420 140
  24130W33C3 150 250 100 20.2    24056W33C3 280 420 140
  24132 160 270 109 26    24060 300 460 160
  24132K30 160 270 109 25.6    24060K30 300 460 160
  24132K30W33C3 160 270 109 25.6    24060K30W33C3 300 460 160
  24132W33C3 160 270 109 26    24060W33C3 300 460 160
  24134 170 280 109 27.2           
  24134K30 170 280 109 26.8           
  24134K30W33C3 170 280 109 26.8           
  24134W33C3 170 280 109 27.2           
  24136 180 300 118 34.3           
  24136K30 180 300 118 33.8           
  24136K30W33C3 180 300 118 33.8           
  24136W33C3 180 300 118 34.3           
  24138 190 320 128 42.8           
  24138K30 190 320 128 42.2           
  24138K30W33C3 190 320 128 42.2           
  24138W33C3 190 320 128 42.8           
  24140 200 340 140 53.4           
  24140K30 200 340 140 52.6           
  24140K30W33C3 200 340 140 52.6           
  24140W33C3 200 340 140 53.4           
  24144 220 370 150 67           
  24144K30 220 370 150 66           
  24144K30W33C3 220 370 150 66           
  24144W33C3 220 370 150 67           
  24148 240 400 160 82.2           
  24148K30 240 400 160 80.9           
  24148K30W33C3 240 400 160 80.9           
  24148W33C3 240 400 160 82.2           
  24152 260 440 180 114           
  24152K30 260 440 180 112           
  24152K30W33C3 260 440 180 112           
  24152W33C3 260 440 180 114           
  24156 280 460 180 120           
  24156K30 280 460 180 118           
  24156K30W33C3 280 460 180 118           
  24156W33C3 280 460 180 120           
  24160 300 500 200 161           
  24160K30 300 500 200 159           
  24160K30W33C3 300 500 200 159           
  24160W33C3 300 500 200 161          

22308E 22309E 22310E 22311E 22312E 22313E
22314E 22315E 22316E 22317E 22318E 22319E
22320E 22321E 22322E 22324E 22326E 22328E
22330E 22332E 22334E 22336E 22338E 22340E
22344E 22348E 22352E 22356E 22360E
22308EK 22309EK 22310EK 22311EK 22312EK
22313EK 22314EK 22315EK 22316EK 22317EK
22318EK 22319EK 22320EK 22321EK 22322EK
22324EK 22326EK 22328EK 22330EK 22332EK
22334EK 22336EK 22338EK 22340EK 22344EK
22348EK 22352EK 22356EK 22360EK
22308MB 22309MB 22310MB 22311MB/W33
22312MB 22313MB 22314MB 22315MB/W33
22316MB 22317MB 22318MB 22319MB/W33
22320MB 22321MB 22322MB 22324MB/W33
22326MB 22328MB 22330MB 22332MB/W33
22334MB 22336MB 22338MB 22340MB/W33
22344MB 22348MB 22352MB 22356MB/W33
22308MBK 22309MBK 22310MBK 22311MBK/W33
22312MBK 22313MBK 22314MBK 22315MBK/W33
22316MBK 22317MBK 22318MBK 22319MBK/W33
22320MBK 22321MBK 22322MBK 22324MBK/W33
22326MBK 22328MBK 22330MBK 22332MBK/W33
22334MBK 22336MBK 22338MBK 22340MBK/W33
22344MBK 22348MBK 22352MBK 22356MBK/W33

Packaging & Shipping

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Body: Roller Bearings
The Number of Rows: Double
Material: Bearing Steel
Spherical: Aligning Bearings
Load Direction: Radial Bearing
Separated: Unseparated
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

self aligning bearing

Are there specific considerations for choosing self-aligning bearings in applications with challenging operating conditions or varying misalignment requirements?

Yes, there are specific considerations to take into account when choosing self-aligning bearings for applications with challenging operating conditions or varying misalignment requirements. Here’s a detailed explanation:

  • Operating Conditions:

When selecting self-aligning bearings for challenging operating conditions, it’s important to consider factors such as temperature, speed, load, and environmental conditions. High temperatures, extreme speeds, heavy loads, and harsh environments can all impact the performance and durability of the bearing. In such cases, it may be necessary to choose self-aligning bearings with special heat-resistant materials, high-speed capabilities, increased load-carrying capacity, or enhanced corrosion resistance. Additionally, proper lubrication selection and maintenance practices become crucial to ensure optimal performance and longevity of the bearings.

  • Misalignment Requirements:

Self-aligning bearings are specifically designed to accommodate misalignment between the shaft and the housing. However, different applications may have varying misalignment requirements. It’s important to consider the magnitude and type of misalignment that the bearing will experience. Some self-aligning bearings can accommodate larger misalignments, while others are designed for smaller or specific types of misalignments, such as angular or parallel misalignment. Understanding the misalignment characteristics of the application is essential to select the appropriate self-aligning bearings that can effectively handle the expected misalignment conditions.

  • Load Capacity and Dynamic Performance:

In applications with challenging operating conditions, it’s crucial to assess the load capacity and dynamic performance requirements of the self-aligning bearings. Heavy loads, shock loads, or vibrations can significantly affect the bearing’s performance and service life. It’s important to choose self-aligning bearings with adequate load-carrying capacity, high shock resistance, and robust construction to withstand the demanding conditions. Additionally, the dynamic performance of the bearing, including factors such as rotational speed, acceleration, and deceleration, should be carefully evaluated to ensure that the selected bearings can meet the application’s performance requirements.

  • Sealing and Contamination Prevention:

In challenging operating conditions, effective sealing and contamination prevention become crucial for self-aligning bearings. Dust, dirt, moisture, and other contaminants can significantly impact the bearing’s performance and service life. It’s important to select self-aligning bearings with appropriate sealing solutions, such as contact seals, non-contact seals, or hybrid seals, depending on the specific application requirements. These seals help prevent the ingress of contaminants and maintain the integrity of the bearing’s internal components, ensuring reliable operation even in harsh environments.

  • Lubrication and Maintenance:

Lubrication and maintenance practices are critical considerations for self-aligning bearings in challenging operating conditions. Proper lubrication selection, including the choice of lubricant type, viscosity, and replenishment frequency, is essential to ensure optimal bearing performance and minimize the risk of premature wear or failure. Additionally, adhering to appropriate maintenance practices, such as regular inspections, re-lubrication, and monitoring of operating conditions, can help identify any potential issues early on and prevent costly downtime or unexpected failures.

By considering these specific factors and requirements, engineers can choose the most suitable self-aligning bearings for applications with challenging operating conditions or varying misalignment requirements. Taking into account the unique demands of the application ensures optimal performance, durability, and reliability of the self-aligning bearings in even the most demanding environments.

self aligning bearing

Can you provide examples of machinery or equipment that rely on self-aligning bearings for reliable operation?

Self-aligning bearings play a crucial role in ensuring the reliable operation of various types of machinery and equipment. Here are some examples of machinery and equipment that rely on self-aligning bearings:

  • Mining Equipment: Self-aligning bearings are used in mining equipment such as crushers, vibrating screens, and conveyor systems. These bearings help compensate for misalignment caused by heavy loads, vibrations, and uneven terrain, ensuring smooth operation and minimizing downtime in the mining industry.
  • Construction Machinery: Construction machinery, including excavators, loaders, and concrete mixers, rely on self-aligning bearings. These bearings accommodate misalignment caused by heavy loads, shock loads, and dynamic forces, enabling reliable performance and durability in demanding construction sites.
  • Paper Machines: Self-aligning bearings are essential components in paper machines, including the dryer section, press section, and calender rolls. These bearings compensate for misalignment caused by thermal expansion, high speeds, and varying loads, ensuring precise alignment and smooth operation throughout the paper manufacturing process.
  • Steel Rolling Mills: Self-aligning bearings are critical in steel rolling mills, where they support the heavy loads and high temperatures involved in the rolling process. These bearings accommodate misalignment caused by thermal expansion, roll deflection, and varying loads, ensuring the accuracy and efficiency of the rolling operations.
  • Printing Presses: Printing presses rely on self-aligning bearings in their rollers, cylinders, and other moving parts. These bearings compensate for misalignment caused by high-speed rotations, vibrations, and thermal effects, ensuring precise alignment and reliable operation in the printing industry.
  • Wind Turbines: Self-aligning bearings are crucial components in wind turbines, supporting the main shaft and rotor assembly. These bearings accommodate misalignment caused by wind gusts, turbine movements, and varying loads, enabling efficient power generation and prolonged service life of the wind turbine.
  • Automotive Wheel Hubs: Self-aligning bearings are used in automotive wheel hub assemblies, providing reliable rotation and supporting the vehicle’s weight. These bearings compensate for misalignment caused by uneven road surfaces, cornering forces, and thermal effects, ensuring safe and smooth operation of automotive vehicles.
  • Food Processing Equipment: Self-aligning bearings are employed in food processing equipment such as mixers, blenders, and conveyors. These bearings accommodate misalignment caused by varying loads, thermal effects, and sanitation processes, ensuring hygienic operation and reliability in food manufacturing facilities.

These are just a few examples of the machinery and equipment that rely on self-aligning bearings for reliable operation. Self-aligning bearings are utilized in a wide range of industries, including mining, construction, paper manufacturing, steel production, printing, renewable energy, automotive, and food processing, among others. Their ability to compensate for misalignment, handle high loads, and ensure smooth operation makes them indispensable components in numerous applications.

self aligning bearing

Can you explain the advantages and unique features of self-aligning bearings?

Self-aligning bearings offer several advantages and unique features that make them suitable for a wide range of applications. Here’s a detailed explanation of the advantages and unique features of self-aligning bearings:

  • Misalignment Compensation:

One of the primary advantages of self-aligning bearings is their ability to accommodate misalignment between the shaft and the housing. This includes angular misalignment, axial misalignment, and shaft deflection. The self-aligning design allows the bearing to adjust its position and compensate for these misalignments, ensuring smooth operation and reducing stress on the bearing components.

  • Reduced Friction and Wear:

Self-aligning bearings help reduce friction and wear in machinery. By accommodating misalignment, they distribute the load more evenly across the rolling elements and raceways, minimizing localized stresses. This results in lower friction, reduced wear, and longer bearing life. Additionally, the self-aligning capability helps prevent excessive heat generation, which can further contribute to reduced friction and wear.

  • Shock and Vibration Absorption:

Self-aligning bearings have the unique ability to absorb shocks and vibrations that occur during operation. The spherical outer ring raceway allows the bearing to move and adjust its position, effectively dampening the impact of shocks and vibrations. This helps improve the overall stability of the machinery, reduces the transmission of vibrations, and protects other components from excessive forces.

  • Easy Installation and Maintenance:

Self-aligning bearings are relatively easy to install and maintain. During installation, their self-aligning capability simplifies the alignment process, as slight misalignments can be accommodated. This saves time and effort in achieving precise alignment. Additionally, self-aligning bearings are typically designed for easy maintenance, allowing for straightforward tasks such as re-greasing or replacement without requiring complex disassembly.

  • Wide Application Range:

Self-aligning bearings are versatile and find applications in various industries and machinery. They are commonly used in applications where misalignment is expected, such as in heavy machinery, conveyor systems, agricultural equipment, and mining operations. The ability to accommodate misalignment makes self-aligning bearings suitable for challenging environments and dynamic operating conditions.

  • Cost-Effective Solution:

Self-aligning bearings offer a cost-effective solution in many applications. Their ability to compensate for misalignment helps prevent premature failure and reduces the need for frequent maintenance or realignment. This can result in cost savings by extending the bearing’s service life, improving overall machinery reliability, and reducing downtime for repairs or replacements.

In summary, self-aligning bearings provide advantages such as misalignment compensation, reduced friction and wear, shock and vibration absorption, easy installation and maintenance, wide application range, and cost-effectiveness. These unique features make them a valuable choice for various industries and applications where misalignment and dynamic operating conditions are present.

China factory CZPT CZPT 22316mbk 22317mbk 22318mbk 22319mbk/W33 Self-Aligning Roller Bearing   bearing blockChina factory CZPT CZPT 22316mbk 22317mbk 22318mbk 22319mbk/W33 Self-Aligning Roller Bearing   bearing block
editor by CX 2024-03-05